
REVISION 0

ST. LOUIS DOWNTOWN SITE ANNUAL ENVIRONMENTAL MONITORING DATA AND ANALYSIS REPORT FOR CALENDAR YEAR 2020

ST. LOUIS, MISSOURI

JULY 15, 2021

U.S. Army Corps of Engineers St. Louis District Office Formerly Utilized Sites Remedial Action Program

REVISION 0

ST. LOUIS DOWNTOWN SITE ANNUAL ENVIRONMENTAL MONITORING DATA AND ANALYSIS REPORT FOR CALENDAR YEAR 2020

ST. LOUIS, MISSOURI

JULY 15, 2021

prepared by

U.S. Army Corps of Engineers St. Louis District Office Formerly Utilized Sites Remedial Action Program

with assistance from

Leidos, Inc.

under Contract No. W912P9-17-D-0014, Delivery Order 0004

TABLE OF CONTENTS

<u>SEC</u>	CTIO	<u>N</u>		PAGE
LIS	T OF	TABLE	S	ii
LIS	T OF	FIGUR	ES	iii
LIS	T OF	APPEN	DICES	iii
ACI	RON	YMS AN	D ABBREVIATIONS	iv
UNI	T AE	BREVL	ATIONS	vi
EXI	ECUT	TIVE SU	MMARY	ES-1
1.0	HIS	TORIC	AL SITE BACKGROUND AND CURRENT SITE STATUS	1-1
	1.1	INTRO	DUCTION	1-1
	1.2	PURPO	OSE	1-1
	1.3	ST. LO	UIS SITE PROGRAM AND SITE BACKGROUND	1-1
		1.3.1	St. Louis Downtown Site Calendar Year 2020 Remedial Actions	1-2
2.0	EV A	ALUATI	ON OF RADIOLOGICAL AIR MONITORING DATA	2-1
	2.1	RADIC	DLOGICAL AIR MEASUREMENTS	
		2.1.1	Gamma Radiation	
		2.1.2 2.1.3	Airborne Radioactive Particulates	
	2.2		UATION OF RADIOLOGICAL AIR MONITORING DATA	
		2.2.1	Evaluation of Gamma Radiation Data	
		2.2.2	Evaluation of Airborne Radioactive Particulate Data	
		2.2.3 2.2.4	Evaluation of Outdoor Airborne Radon Data Evaluation of Indoor Airborne Radon Data	
2.0	EXA			
3.0			ON WATER MONITORING DATA	
	3.1		UATION OF EXCAVATION WATER DISCHARGE MONITORING LTS AT THE ST. LOUIS DOWNTOWN SITE	
4.0	GR		ATER MONITORING DATA	
7.0	4.1		NDWATER MONITORING AT THE ST. LOUIS DOWNTOWN SIT	
	4.2		UATION OF GROUNDWATER MONITORING DATA	
	7.2	4.2.1	Evaluation of HU-A Groundwater Monitoring Data	
		4.2.2	Evaluation of HU-B Groundwater Monitoring Data	
		4.2.3	Comparison of Historical Groundwater Data at the St. Louis	4 -
		4.2.4	Downtown Site Evaluation of Potentiometric Surface at the St. Louis Downtown Site	
5.0	ENI		MENTAL QUALITY ASSURANCE PROGRAM	
5.0	5.1		RAM OVERVIEW	
	5.1		ITY ASSURANCE PROGRAM PLAN	
	5.3		LING AND ANALYSIS GUIDE	
	5.3 5.4		SAMPLE COLLECTION AND MEASUREMENT	
	J.4	LILLI	DAIMI LE COLLECTION AND MEASUREMENT	J-Z

i

TABLE OF CONTENTS (Continued)

SEC	TION	<u>\</u>	<u>PAGE</u>
	5.5	PERFORMANCE AND SYSTEM AUDITS	5-2
		5.5.1 Field Assessments	5-2
		5.5.2 Laboratory Audits	5-2
	5.6	SUBCONTRACTED LABORATORY PROGRAMS	5-3
	5.7	QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES	5-4
		5.7.1 Duplicate Samples	5-4
		5.7.2 Split Samples	5-4
		5.7.3 Equipment Rinsate Blanks	5-5
	5.8	DATA REVIEW, EVALUATION, AND VALIDATION	5-5
	5.9	PRECISION, ACCURACY, REPRESENTATIVENESS, COMPARABILITY, COMPLETENESS, AND SENSITIVITY	
	5.10	DATA QUALITY ASSESSMENT SUMMARY	
		RESULTS FOR PARENT SAMPLES AND THE ASSOCIATED DUPLICATE AND SPLIT SAMPLES	Е
6.0	DAT	DIOLOGICAL DOSE ASSESSMENT	
0.0	6.1	SUMMARY OF ASSESSMENT RESULTS	
	6.2	PATHWAY ANALYSIS	
	6.3	EXPOSURE SCENARIOS	
	6.4	DETERMINATION OF TOTAL EFFECTIVE DOSE EQUIVALENT FOR	0-2
	0.4	EXPOSURE SCENARIOS	6-2
7.0	REE	ERENCES	
7.0	KLI	LIST OF TABLES	••••• <i>I</i> - I
NIIN	MBER		PAGE
		-	
	e 2-1.	Summary of SLDS Gamma Radiation Data for CY 2020	
	e 2-2. e 2-3.	Summary of SLDS Airborne Radioactive Particulate Data for CY 2020	
	e 2-3. e 2-4.	Summary of SLDS Outdoor Airborne Radon (Rn-222) Data for CY 2020 Summary of SLDS Indoor Airborne Radon (Rn-222) Data for CY 2020	
	e 3-1.	Excavation Water Discharged at the SLDS in CY 2020	
	e 4-1.	<u> </u>	
	e 4-2.	Analytes Detected in HU-A Groundwater at the SLDS in CY 2020	
	e 4-3.	Analytes Detected in HU-B Groundwater at the SLDS in CY 2020	
	e 4-4.	Results of Mann-Kendall Trend Test for SLDS Groundwater in CY 2020	
	e 5-1.		
	e 5-2.	Radiological Duplicate Sample Analysis for CY 2020 – Groundwater	
Tabl	e 5-3.	Non-Radiological Split Sample Analysis for CY 2020 – Groundwater	
Tabl	e 5-4.		
Tabl	e 5-5.	Non-Radiological Parent Samples and Associated Duplicate and Split	- ^
ፐሬዜነ	a 5	Samples for CY 2020 – Groundwater	5-8
1 aul	e 5-6.	Radiological Parent Samples and Associated Duplicate and Split Samples for CY 2020 – Groundwater	5_8
Tabl	e 6-1.	Complete Radiological Exposure Pathways for the SLDS	
	-	1 0 1	

ii REVISION 0

LIST OF FIGURES

N	UN	ИB	ER
---	----	----	----

- Figure 1-1. Location Map of the St. Louis Sites
- Figure 1-2. Plan View of the SLDS
- Figure 2-1. Gamma Radiation, Radon, and Particulate Air Monitoring at St. Louis Background Location USACE Service Base
- Figure 2-2. Gamma Radiation and Radon Monitoring Locations at the SLDS
- Figure 3-1. MSD Excavation Water Discharge Points at the SLDS
- Figure 4-1. Generalized Stratigraphic Column for the SLDS
- Figure 4-2. SLDS Geologic Cross-Section A-A'
- Figure 4-3. Groundwater Monitoring Well Locations at the SLDS
- Figure 4-4. Arsenic Concentration Trends in Unfiltered Groundwater at the SLDS
- Figure 4-5. Total U Concentration Trends in Unfiltered Groundwater at the SLDS
- Figure 4-6. Time-Versus-Concentration Plots for Arsenic and Total U in Groundwater Monitoring Wells at the SLDS
- Figure 4-7. HU-A Potentiometric Surface at the SLDS (May 27, 2020)
- Figure 4-8. HU-B Potentiometric Surface at the SLDS (May 27, 2020)
- Figure 4-9. HU-A Potentiometric Surface at the SLDS (November 11, 2020)
- Figure 4-10. HU-B Potentiometric Surface at the SLDS (November 11, 2020)
- Figure 6-1. St. Louis FUSRAP SLDS Dose Trends
- Figure 6-2. St. Louis FUSRAP SLDS Maximum Dose vs. Background Dose

LIST OF APPENDICES

- Appendix A Documents Finalized in Calendar Year 2020
- Appendix B St. Louis Downtown Site 2020 Radionuclide Emissions NESHAP Report Submitted in Accordance with Requirements of 40 *CFR* 61, Subpart I
- Appendix C* Environmental Thermoluminescent Dosimeter, Alpha Track Detector, and Perimeter Air Data
- Appendix D* Stormwater, Wastewater, and Excavation Water Data
- Appendix E* Groundwater Field Parameter Data for Calendar Year 2020 and Analytical Data Results for Calendar Year 2020
- Appendix F* Well Maintenance Checklists for the Annual Groundwater Monitoring Well Inspections Conducted at the St. Louis Downtown Site in Calendar Year 2020
- Appendix G Dose Assessment Assumptions

BACK COVER

*CD-ROM Appendices C, D, E, and F

iii REVISION 0

ACRONYMS AND ABBREVIATIONS

AEC U.S. Atomic Energy Commission

amsl above mean sea level

ANAB ANSI National Accreditation Board

ATD alpha track detector BTOC below top of casing

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations
COC contaminant of concern

CY calendar year
DL detection limit
DO dissolved oxygen

DOD U.S. Department of Defense DOE U.S. Department of Energy DQO data quality objective EDE effective dose equivalent

ELAP Environmental Laboratory Accreditation Program

EM Engineer Manual

EMDAR Environmental Monitoring Data and Analysis Report
EMG Environmental Monitoring Guide for the St. Louis Sites

EMICY20 Environmental Monitoring Implementation Plan for the St. Louis

Downtown Site for Calendar Year 2020

EMP Environmental Monitoring Program

ER Engineer Regulation

FUSRAP Formerly Utilized Sites Remedial Action Program

Futura Coatings Company

GRAAA groundwater remedial action alternative assessment

HISS Hazelwood Interim Storage Site

HU hydrostratigraphic unit ICP inductively coupled plasma

IL investigative limit

K potassium

KPA kinetic phosphorescence analysis

LCS laboratory control sample

Mallinckrodt LLC

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual

MDA minimum detectable activity

MDNR Missouri Department of Natural Resources

MDC minimum detectable concentration

MDL method detection limit
MED Manhattan Engineer District

MSD Metropolitan St. Louis Sewer District

NAD normalized absolute difference

NCRP National Council of Radiation Protection and Measurements NESHAP National Emissions Standards for Hazardous Air Pollutants

NRC U.S. Nuclear Regulatory Commission

ORP oxidation reduction potential PDI pre-design investigation

iv REVISION 0

ACRONYMS AND ABBREVIATIONS (Continued)

QA quality assurance

QAPP quality assurance program plan

QC quality control

QSM Department of Defense (DoD)/Department of Energy (DOE) Consolidated

Quality Systems Manual (QSM) for Environmental Laboratories

Ra radium

RA remedial action RL reporting limit

RME reasonably maximally exposed

Rn radon

ROD Record of Decision for the St. Louis Downtown Site

RPD relative percent difference

SAG Sampling and Analysis Guide for the St. Louis Sites

SLAPS St. Louis Airport Site
SLDS St. Louis Downtown Site

SLS St. Louis Sites

SOP standard operating procedure

SOR sum of ratios SU survey unit

TEDE total effective dose equivalent

Th thorium

TLD thermoluminescent dosimeter TSS total suspended solid(s)

U uranium

USACE U.S. Army Corps of Engineers USCS unified soil classification system

USEPA U.S. Environmental Protection Agency

VP vicinity property
VQ validation qualifier
WRS Wilcoxon Rank Sum

V REVISION 0

UNIT ABBREVIATIONS

Both English and metric units are used in this report. The units used in a specific situation are based on common unit usage or regulatory language (e.g., depths are given in feet, and areas are given in square meters). Units included in the following list are not defined at first use in this report.

 $\begin{array}{ll} ^{\circ}C & degree(s) \ Celsius \ (centigrade) \\ \mu Ci/mL & microcurie(s) \ per \ milliliter \\ \mu g/L & microgram(s) \ per \ liter \\ \end{array}$

μS/cm microSiemen(s) per centimeter

Ci curie(s) ft foot/feet m meter(s)

mg/L milligram(s) per liter

 $\begin{array}{ll} mL & milliliter(s) \\ mrem & millirem \\ mV & millivolt(s) \end{array}$

NTU nephelometric turbidity unit

pCi/L picocurie(s) per liter

WL working level yd³ cubic yard(s)

vi REVISION 0

EXECUTIVE SUMMARY

This annual Environmental Monitoring Data and Analysis Report (EMDAR) for calendar year (CY) 2020 applies to the St. Louis Downtown Site (SLDS), which is within the St. Louis Sites (SLS) (Figure 1-1) and under the scope of the Formerly Utilized Sites Remedial Action Program (FUSRAP). This EMDAR provides an evaluation of the data collected as part of the implementation of the Environmental Monitoring Program (EMP) for the SLDS. The SLDS consists of the Mallinckrodt LLC (Mallinckrodt) plant and surrounding vicinity properties (VPs) (Figure 1-2). Environmental monitoring of various media at the SLDS is required in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the commitments in the *Record of Decision for the St. Louis Downtown Site* (ROD) (USACE 1998a).

The purpose of this EMDAR is:

- 1. to document the environmental monitoring activities, and
- 2. to assess whether remedial actions (RAs) had a measurable environmental impact by:
 - a. reporting the current condition of the SLDS,
 - b. summarizing the data collection effort for CY 2020, and
 - c. providing an analysis of the environmental monitoring data to date.

The U.S. Army Corps of Engineers (USACE) St. Louis District collects comprehensive environmental data for decision-making and planning purposes. Environmental monitoring, performed as a Best Management Practice or as a component of RA, serves as a critical component in the evaluation of the current status and potential future migration of residual contaminants.

The environmental monitoring described in the *Environmental Monitoring Implementation Plan* for the St. Louis Downtown Site for Calendar Year 2020 (EMICY20) (USACE 2019) was conducted as planned, and the results are documented in this EMDAR. Evaluation of the environmental monitoring data for all SLDS properties demonstrates compliance with applicable or relevant and appropriate requirements (ARARs).

RADIOLOGICAL AIR MONITORING

Radiological air data were collected and evaluated at the SLDS through airborne radioactive particulate, radon (indoor and outdoor), and gamma radiation monitoring, as required in the EMICY20 (USACE 2019). In addition, for environmental monitoring purposes, radiological air data were also used as inputs to calculate total effective dose equivalent (TEDE) to the hypothetical maximally exposed individual at the SLDS.

The TEDE calculated for the hypothetical maximally exposed individual at the SLDS was 0.6 mrem per year. The results of the radiological air monitoring conducted at the SLDS demonstrate compliance with ARARs for the SLDS.

EXCAVATION WATER DISCHARGE MONITORING AT THE ST. LOUIS DOWNTOWN SITE

CY 2020 was the 22nd year excavation water discharge from the SLDS was monitored and reported. Excavation water from the SLDS was discharged to the St. Louis sanitary sewer system in compliance with the requirements stated in the July 23, 2001, Metropolitan St. Louis Sewer District (MSD) authorization letter (MSD 2001) and amended in the October 13, 2004, MSD letter (MSD 2004). Two (2)-year authorization letters were issued beginning in 2004 and extended every 2 years through the current cycle expiring on July 23, 2022 (MSD 2020). Copies of these authorization letters can be found in the project administrative record or in Appendix A

ES-1 REVISION 0

of the EMICY20 (USACE 2019). During CY 2020, no exceedances of the MSD limits occurred at the SLDS.

GROUNDWATER MONITORING

Groundwater was sampled during CY 2020 at the SLDS following a protocol for individual wells and analytes. Samples were analyzed for various radiological constituents and inorganic parameters. Static groundwater elevations for all SLDS wells were measured quarterly.

The environmental sampling requirements and groundwater criteria for each analyte are consistent with the EMICY20. The groundwater criteria are used for comparison and discussion purposes. The criteria for assessing groundwater sampling data at the SLDS include the investigative limits (ILs) identified in the ROD (USACE 1998a) and the combined radium (Ra)-226/Ra-228 concentration limit from 40 *Code of Federal Regulations* (*CFR*) 192.02 (Table 1 of Subpart A). The groundwater criteria are presented in Table 2-6 of the EMICY20 and in Section 4.0 of this EMDAR. For those stations where an analyte exceeded the groundwater criteria at least once during CY 2020 and sufficient data were available to evaluate trends, Mann-Kendall statistical trend analyses were completed to assess whether analyte concentrations were increasing or decreasing through time.

During CY 2020, three hydrostratigraphic unit (HU)-A monitoring wells (B16W06S, B16W12S, and DW19RS) were sampled (Figure 4-3). B16W06S was sampled in the fourth quarter for arsenic and cadmium. B16W12S was sampled in the second quarter for arsenic, cadmium and radionuclides (Ra-226, Ra-228, thorium [Th]-228, Th-230, Th-232, uranium [U]-234, U-235, and U-238). DW19RS was sampled for arsenic, cadmium, and radionuclides in the second, third, and fourth quarters. Trend analysis was conducted for arsenic in B16W06S and DW19RS, and total U in B16W12S and DW19RS. Based on the graph and a quantitative evaluation of the trend using the Mann-Kendall Trend Test (Section 4.2.3), there were no statistically significant trends for contaminants of concern (COCs) in the HU-A groundwater for the wells sampled in CY 2020.

During CY 2020, seven HU-B (Mississippi Alluvial Aquifer) monitoring wells (B16W08D, DW14, DW15, DW16, DW17, DW18, and DW19RD) were sampled. Mann-Kendall Trend Tests were conducted for COCs that exceeded the ILs in HU-B wells during CY 2020: arsenic in DW14, DW16, and DW18; and total U in DW19RD. The results of the Mann-Kendall Trend Tests for arsenic indicate a statistically significant downward trend in DW14 and a statistically significant upward trend in DW16 and DW18. The results of the Mann-Kendall Trend Tests indicate no statistically significant trend for total U concentrations in DW19RD. However, total U concentrations in groundwater samples from monitoring wells DW19 and DW19RD have consistently exceeded the IL of 20 µg/L.

Potentiometric surface maps were created from groundwater elevations measured in May and November to illustrate groundwater flow conditions in wet and dry seasons. The groundwater surface in HU-A under the eastern portion of the Mallinckrodt plant is generally sloping northeastward toward the Mississippi River. Comparison of Figure 4-7 (May) with Figure 4-9 (November) indicates groundwater flow patterns in HU-A differ for the wet and dry season conditions during CY 2020.

In HU-B, groundwater flow and direction are strongly influenced by river stage, which indicates a hydraulic connection to the Mississippi River (Figures 4-8 and 4-10). The flow direction at the site is generally north-northeast toward the Mississippi River. Localized groundwater depression was observed in the vicinity of the two HU-B wells DW18 and B16W07D, likely due to decreased recharge from the river and decreased seepage from overlying HU-A in that area.

ES-2 REVISION 0

1.0 HISTORICAL SITE BACKGROUND AND CURRENT SITE STATUS

1.1 INTRODUCTION

This annual Environmental Monitoring Data and Analysis Report (EMDAR) for calendar year (CY) 2020 applies to the St. Louis Downtown Site (SLDS) which is within the St. Louis Sites (SLS) (Figure 1-1) and under the scope of the Formerly Utilized Sites Remedial Action Program (FUSRAP). This EMDAR provides an evaluation of the data collected as part of the implementation of the Environmental Monitoring Program (EMP) for the SLDS. The SLDS consists of the Mallinckrodt LLC (Mallinckrodt) plant and surrounding vicinity properties (VPs) (Figure 1-2). Environmental monitoring of various media at the SLDS is required in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the commitments in the *Record of Decision for the St. Louis Downtown Site* (ROD) (USACE 1998a).

1.2 PURPOSE

The purpose of this EMDAR is to document the environmental monitoring activities and to assess whether remedial actions (RAs) at the SLDS had a measurable environmental impact. In addition, this EMDAR serves to enhance the reader's awareness of the current condition of the SLDS, summarize the data collection efforts for CY 2020, and provide analysis of the CY 2020 environmental monitoring data results. This EMDAR presents the following information:

- Sample collection data for various media at the SLDS and interpretation of CY 2020 EMP results;
- The compliance status of the SLDS with federal and state applicable or relevant and appropriate requirements (ARARs) or other benchmarks (e.g., *Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for CY 2020* [EMICY20] [USACE 2019]);
- Dose assessments for radiological contaminants as appropriate at the SLDS;
- A summary of trends based on changes in contaminant concentrations to support RAs, ensure public safety, and maintain surveillance monitoring requirements at the SLDS; and
- The identification of data gaps and future EMP needs.

1.3 ST. LOUIS SITE PROGRAM AND SITE BACKGROUND

The FUSRAP was executed by the U.S. Atomic Energy Commission (AEC) in 1974 to identify, remediate, or otherwise control sites where residual radioactivity remains from operations conducted for the Manhattan Engineer District (MED) and AEC during the early years of the nation's atomic energy program. The FUSRAP was continued by the follow-on agencies to the AEC until 1997, when the U.S. Congress transferred responsibility for FUSRAP to the U.S. Army Corps of Engineers (USACE).

The SLDS properties were involved with refinement of uranium ores, production of uranium metal and compounds, uranium recovery from residues and scrap, and the storage and disposal of associated process byproducts. The processing activities were conducted in portions of the SLDS under contract to the MED/AEC between the early 1940s and the 1950s.

A detailed description and history of the SLDS can be found in the *Remedial Investigation Report for the St. Louis Site* (U.S. Department of Energy [DOE] 1994); the *Remedial*

1-1 REVISION 0

Investigation Addendum for the St. Louis Site (DOE 1995); the ROD (USACE 1998a); and the Environmental Monitoring Guide for the St. Louis Sites (EMG) (USACE 1999a).

USACE SLDS documents finalized in CY 2020 are listed in Appendix A.

1.3.1 St. Louis Downtown Site Calendar Year 2020 Remedial Actions

During CY 2020, RAs were performed at the following SLDS properties (Figure 1-2): Destrehan Street, Gunther Salt North VP (DT-4), and Plant 7 West (henceforth referred to as Plant 7W). RAs at Gunther Salt North VP (DT-4) continued throughout the year. RAs at Destrehan Street and Plant 7W were completed in the third quarter. A total of 3,656 yd³ of contaminated material were shipped from the SLDS via railcar to US Ecology in Michigan for proper disposal. Additionally, loadout activities were performed at Plant 6.

Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (U.S. Department of Defense [DOD] 2000) Class 1 verifications were performed at Gunther Salt North VP (DT-4) (survey unit [SU]-1, SU-4 SU-5, and SU-6) and Plant 7W (SU-6 and SU-9) during CY 2020. MARSSIM Class 2 verifications were performed at Plant 7W. No MARSSIM Class 3 verifications were performed during CY 2020. Verifications at the SLDS were performed to confirm that the remediation goals of the ROD were achieved. The SLDS is shown on Figure 1-2.

Characterizations/pre-design investigations (PDIs) were performed at the Bruce Oakley Property (DT-9) and along the Mississippi River during CY 2020.

No monitoring wells were decommissioned in CY 2020.

In accordance with the MSD authorization letter for the SLDS, 1,225,388 gallons of excavation water were discharged in CY 2020. Since the beginning of the project, 33,653,117 gallons have been treated and released to MSD at the SLDS.

1-2 REVISION 0

2.0 EVALUATION OF RADIOLOGICAL AIR MONITORING DATA

This section documents environmental monitoring activities related to radiological air data. The radiological air monitoring conducted at the SLDS is conducted as part of the EMP. Radiological air data are collected to evaluate the compliance status of each site with respect to ARARs, to evaluate trends, and to perform dose assessments for radiological contaminants, as appropriate, at each site. Section 2.1 includes a description of the types of radiological air monitoring conducted at the SLDS, potential sources of the contaminants to be measured (including natural background), and measurement techniques employed during CY 2020.

All radiological air monitoring required through implementation of the EMICY20 (USACE 2019) was conducted as planned during CY 2020. The evaluations of radiological air monitoring data for all SLDS properties demonstrate compliance with ARARs.

A total effective dose equivalent (TEDE) for the reasonably maximally exposed (RME) member of the public was calculated for the SLDS by summing the dose due to gamma radiation, radiological air particulates, and radon. The TEDE calculated for the RME individual at the SLDS was 0.6 mrem per year. The TEDE for the SLDS was below the 10 *Code of Federal Regulations* (*CFR*) 20.1301 limit for members of the public, which is 100 mrem per year. Details of the radiological dose assessment (TEDE calculation) are presented in Section 6.0.

2.1 RADIOLOGICAL AIR MEASUREMENTS

The three types of radiological air monitoring conducted at the SLS during CY 2020 are gamma radiation, airborne radioactive particulates, and airborne radon. Section 2.2 provides details of the air monitoring conducted at the SLDS.

2.1.1 Gamma Radiation

Gamma radiation is emitted from natural, cosmic, and manmade sources. The earth naturally contains gamma radiation-emitting substances, such as the uranium decay series, the thorium decay series, and potassium (K)-40. Cosmic radiation originates in outer space and filters through the atmosphere to the earth. Together, these two sources comprise the majority of natural gamma background radiation. The National Council of Radiation Protection and Measurements (NCRP) estimates that the total naturally occurring background radiation dose equivalent due to gamma exposure is 51 mrem per year, 20 mrem per year of which originates from sources on earth and 31 mrem per year of which originates from cosmic sources (NCRP 2009). The background monitoring locations for the SLS (Figure 2-1) are reasonably representative of background gamma radiation for the St. Louis metropolitan area (Appendix C, Table C-2).

Gamma radiation was measured at the SLDS during CY 2020 using thermoluminescent dosimeters (TLDs). TLDs were placed at locations representative of areas accessible to the public (Figure 2-2) in order to provide input for calculation of the TEDE.

The TLDs were placed at the monitoring location approximately 5 ft above the ground surface inside a housing shelter. The TLDs were collected quarterly and sent to a properly certified, off-site laboratory for analysis (Appendix C, Table C-2).

2-1 REVISION 0

2.1.2 Airborne Radioactive Particulates

2.1.2.1 Air Sampling

Airborne radioactive particulates result from radionuclides in soils that become suspended in the air. The radionuclides in soil normally become airborne as a result of wind erosion of the surface soil or as a result of soil disturbance (e.g., excavation). This airborne radioactive material includes naturally occurring background concentrations (Appendix C, Table C-1) as well as above-background concentrations of radioactive materials present at the SLDS (Appendix C, Table C-3).

Airborne radioactive particulates were measured at the SLDS by drawing air through a filter membrane with an air sampling pump placed approximately 3 ft above the ground, and then analyzing the material contained on the filter. The results of the analysis, when compared to the amount of air drawn through the filter, were reported as radioactive contaminant concentrations (i.e., μ Ci/mL). Particulate air monitors were located in predominant wind directions at excavation and loadout area perimeter locations (Figure 2-2), as appropriate, to provide input for the National Emissions Standard for Hazardous Air Pollutants (NESHAP) Report and calculation of TEDE to the critical receptor. Air particulate samples were typically collected daily on working days.

2.1.2.2 Estimation of Emissions in Accordance with the National Emissions Standard for Hazardous Air Pollutants

The SLDS CY 2020 NESHAP report (Appendix B) presents calculation of the effective dose equivalent (EDE) from radionuclide emissions to critical receptors in accordance with the NESHAP. The report is prepared in accordance with the requirements and procedures contained in 40 *CFR* 61, Subpart I.

Emission rates calculated using air sampling data, activity fractions, and other site-specific information were used for the SLDS as inputs to the U.S. Environmental Protection Agency (USEPA) CAP88-PC Version 4.1 computer code (USEPA 2020) to demonstrate compliance with the 10 mrem per year ARAR in 40 *CFR* 61, Subpart I.

CY 2020 monitoring results for the SLDS demonstrate compliance with the 10 mrem per year ARAR prescribed in 40 *CFR* 61, Subpart I. See Section 2.2.2 for further details.

2.1.3 Airborne Radon

Uranium (U)-238 is a naturally occurring radionuclide commonly found in soil and rock. Radon (Rn)-222 is a naturally occurring radioactive gas found in the uranium decay series. A fraction of the radon produced from the radioactive decay of naturally occurring U-238 diffuses from soil and rock into the atmosphere, accounting for natural background airborne radon concentrations. In addition to this natural source, radon is produced from the above-background concentrations of radioactive materials present at the SLDS.

Outdoor airborne radon concentration is governed by the emission rate and dilution factors, both of which are strongly affected by meteorological conditions. Surface soil is the largest source of radon. Secondary contributors include oceans, natural gas, geothermal fluids, volcanic gases, ventilation from caves and mines, and coal combustion. Radon levels in the atmosphere have been observed to vary with elevation, season, time of day, or location. The chief meteorological parameter governing airborne radon concentration is atmospheric stability; however, the largest variations in atmospheric radon occur spatially (USEPA 1987).

2-2 REVISION 0

Radon alpha track detectors (ATDs) were used at the SLDS to measure alpha particles emitted from radon and its associated decay products. The background monitoring locations for the SLS (Figure 2-1) are reasonably representative of background radon concentrations for the St. Louis metropolitan area. Radon ATDs were co-located with environmental TLDs approximately 3 to 5 ft above the ground surface in housing shelters at locations representative of areas accessible to the public (Figure 2-2). Outdoor ATDs were collected approximately every 6 months and sent to a properly certified off-site laboratory for analysis (Appendix C, Table C-4). Recorded radon concentrations are listed in pCi/L and are compared to the value of 0.5 pCi/L average annual above-background concentration as listed in 40 *CFR* 192.02(b)(2).

CY 2020 outdoor radon monitoring results for the SLDS demonstrate compliance with the 0.5 pCi/L ARAR prescribed in 40 *CFR* 192.02(b)(2). See Section 2.2.3 for further details.

At the SLDS, ATDs were also placed in locations within applicable structures (Building 26 at Plant 1 and the South Storage Building at DT-4 North) to monitor for indoor radon exposure (Figure 2-2). The ATDs were placed in areas that represent the highest likely exposure from indoor radon. ATD locations were selected with consideration given to known radium (Ra)-226 concentrations under applicable buildings and occupancy times at any one location within each building. Annual average indoor radon data in each applicable building were compared to the 40 *CFR* 192.12(b)(1) ARAR value of 0.02 WL. In accordance with 40 *CFR* 192.12(b)(1), reasonable effort shall be made to achieve, in each habitable or occupied building, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL. In any case, the radon decay product concentration shall not exceed 0.03 WL. Background indoor radon monitors were not necessary because the regulatory standard of 0.02 WL includes background. Indoor ATDs were also collected approximately every 6 months and sent to a properly certified off-site laboratory for analysis (Appendix C, Table C-4).

CY 2020 indoor radon monitoring results for the SLDS demonstrate compliance with the 0.02 WL ARAR prescribed by 40 *CFR* 192.12(b)(1). See Section 2.2.4 for further details.

2.2 EVALUATION OF RADIOLOGICAL AIR MONITORING DATA

2.2.1 Evaluation of Gamma Radiation Data

Gamma radiation monitoring was performed at the SLDS during CY 2020 at six locations representative of areas accessible to the public (Figure 2-2) and at the background location (Figure 2-1) to compare on-site/off-site exposure and to provide input for calculation of TEDE to the critical receptor. The EMP uses two TLDs at Monitoring Station DA-8 (for each monitoring period) to provide additional quality control (QC) of monitoring data. A summary of TLD monitoring results for CY 2020 at the SLDS is shown in Table 2-1. TLD data are contained in Appendix C, Table C-2, of this EMDAR.

First Quarter Second Quarter Third Quarter **Fourth Quarter** CY 2020 Monitoring Monitoring **TLD Data TLD Data TLD Data TLD Data** Net TLD Location Station (mrem/quarter) Data Cor.a,b Rpt. Rpt. Cor.a,b Cor.a,b Rpt. Cor.a,b (mrem/year) Rpt. DA-3 18.9 0.0 20.6 0.0 19.8 0.0 19 0.0 0.0 DA-8 20.9 2.2 23.5 0.6 22.3 1.5 19.1 0.0 4.4 DA-8 c 21.4 2.8 24.7 1.8 22.2 1.4 19.1 0.0 **SLDS** 21.4 Perimeter DA-9 2.8 24.6 1.7 23.2 2.5 19.3 0.0 7.0 DA-10 22.3 3.8 21.3 0.0 18.8 0.0 17.7 0.0 3.8 DA-11 19.4 22.2 20.3 0.0 17.1 0.0 0.6 0.6 0.0

 Table 2-1. Summary of SLDS Gamma Radiation Data for CY 2020

2-3 REVISION 0

Table 2-1. Summary of SLDS	Camma Radiation Data	for CV 2020 (Continued)
Table 2-1. Summary of SLDS	Gaillilla Kaulauoli Data	TOF C Y ZUZU (COMMINUCA)

Monitoring	Monitoring		Quarter Data		Quarter Data	Third (TLD	Quarter Data		Quarter Data	CY 2020 Net TLD
Location	Station		(mrem/quarter)							Data
		Rpt.	Cor.a,b	Rpt.	Cor.a,b	Rpt.	Cor.a,b	Rpt.	Cor.a,b	(mrem/year)
SLDS Perimeter	DA-12	18.7	0.0	23.3	0.4	22.5	1.8	19.7	0.0	2.2
Background	BA-1	18.9		22.9		20.9		19.9		

All quarterly data reported from the vendor have been normalized to exactly one quarter's exposure above background.

Cor.-corrected

Rpt. - reported

2.2.2 Evaluation of Airborne Radioactive Particulate Data

Air sampling for radiological particulates during CY 2020 was conducted by the RA contractor at the perimeter of each active excavation and loadout area within the SLDS. Air particulate data were used as inputs to the NESHAP report (Appendix B) and calculation of TEDE to the critical receptor (Section 6.0). Air sampling for radiological particulates was not conducted at the SLDS perimeter locations during CY 2020 due to the insignificant potential for material to become airborne at the site. The ground surface at the SLDS is generally covered with asphalt or concrete, which limits the potential for material to become airborne. A summary of air particulate monitoring data from excavation perimeters is shown in Table 2-2. Airborne radioactive particulate data are contained in Appendix C, Table C-3, of this EMDAR.

Table 2-2. Summary of SLDS Airborne Radioactive Particulate Data for CY 2020

Monitoring Location	Average Concentration (µCi/mL) ^a		
Withhornig Location	Gross Alpha	Gross Beta	
Plant 7W	1.53E-15	7.25E-15	
Gunther Salt (DT-4)	5.14E-15	2.84E-14	
Plant 6 Loadout	4.85E-15	2.96E-14	
Background Concentration (BA-1) ^b	3.57E-15	1.88E-14	

^a Average concentration values for the sampling period by location.

2.2.3 Evaluation of Outdoor Airborne Radon Data

Outdoor airborne radon monitoring was performed at the SLDS using ATDs to measure radon emissions. Six detectors were co-located with the TLDs at locations shown on Figure 2-2. One additional detector was located at Monitoring Station DA-8 as a QC duplicate. A background ATD, co-located with the background TLD (Section 2.2.1), was used to compare on-site exposure and off-site background exposure. In accordance with 40 *CFR* 192.02(b)(2), control of residual radioactive materials from a uranium mill tailings pile must be designed to provide reasonable assurance that releases of radon to the atmosphere will not increase the annual average concentration of radon outside the disposal site by more than 0.5 pCi/L. Although a uranium mill tailings pile is not associated with any of the SLS, these standards are used for comparative purposes. Outdoor airborne radon data were used as an input for calculation of the TEDE to the critical receptor (Section 6.0) and compared to the 0.5 pCi/L average annual concentration above background value listed in 40 *CFR* 192.02(b)(2). The average annual radon concentration above background at the SLDS monitoring stations was 0.01 pCi/L, meeting the

2-4 REVISION 0

b CY 2020 net TLD data are corrected for background, shelter absorption (s/a = 1.075), and fade.

A QC duplicate is collected at the same time and location, and is analyzed by the same method for evaluating precision in sampling and analysis. Duplicate sample results were not included in calculations.

⁻⁻⁻ Result calculation is not required.

These concentrations are only provided for informational purposes.

40 *CFR* 192.02(b)(2) limit of 0.5 pCi/L. A summary of outdoor airborne radon data is shown in Table 2-3. Outdoor ATD data are contained in Appendix C, Table C-4, of this EMDAR.

Table 2-3. Summary of SLDS Outdoor Airborne Radon (Rn-222) Data for

Manitaring	Monitoring	Average Annual Concentration (pCi/L)					
Monitoring Location	Station	01/06/20 to 07/08/20 (Uncorrected) ^a	07/08/20 to 01/06/21 (Uncorrected) ^a	Average Annual Concentration ^b			
	DA-3	0.08	0.14	0.0			
	DA-8	0.08	0.14	0.0			
	DA-8 °	0.08	0.14				
SLDS	DA-9	0.08	0.11	0.0			
	DA-10	0.08	0.14	0.0			
	DA-11	0.08	0.14	0.0			
	DA-12	0.14	0.16	0.03			
Background	BA-1	0.11	0.14				

Detectors were installed and removed on the dates listed. Data are as reported from the vendor (gross data including background).

2.2.4 Evaluation of Indoor Airborne Radon Data

Indoor radon monitoring was performed at two SLDS buildings (Building 26 at Plant 1 and the South Storage Building at DT-4 North) using one ATD placed in each building at a height of 5 ft (to approximate breathing zone conditions) to measure radon concentrations (Figure 2-2). The ATDs were installed in January of CY 2020 at each monitoring location, collected for analysis after approximately 6 months of exposure, and replaced with another set that would represent radon exposure for the remainder of the year. However, radon monitoring at the South Storage Building at DT-4 North was discontinued on August 26, 2020, during the second 6-month monitoring period, and just prior to that building's demolition. Recorded radon concentrations (listed in pCi/L) were converted to radon WL, and an indoor radon equilibrium factor of 0.4 (NCRP 1988) was applied.

The results (including background) were evaluated based on the criteria contained in 40 *CFR* 192.12(b)(1). The average annual radon concentration was determined to be less than the 40 *CFR* 192.12(b)(1) criterion of 0.02 WL in each building (Leidos 2021a). In addition, the concentrations at each indoor monitoring location were all less than 0.03 WL. Additional details of the data and calculation methodology used to determine indoor radon WL in SLDS buildings are contained in Table 2-4. Indoor ATD data are contained in Appendix C, Table C-4, of this EMDAR.

Table 2-4. Summary of SLDS Indoor Airborne Radon (Rn-222) Data for CY 2020

Manitoning	Monitoring	Average A	nnual Concentrat	ion (pCi/L)	
Monitoring Location	Monitoring Station	01/06/20 to 07/08/20 ^a	07/08/20 to 01/06/21 ^a	Annual Average ^b	WL ^c
Plant 1, Building 26	DI-1	0.57	0.89	0.73	0.003
DT-4 North, South Storage Building	DI-2	0.54	0.41	0.48	0.002

Detectors were installed and removed on the dates listed with the exception of the removal of DI-2 on 08/25/20 during the 2nd monitoring period which was collected early prior to building demolition. Data are as reported from the vendor.

2-5 REVISION 0

Results reported from vendor for two periods are time-weighted and averaged to estimate an annual average radon concentration (pCi/L) above background.

A QC duplicate is collected at the same time and location, and is analyzed by the same method for evaluating precision in sampling and analysis.

⁻⁻⁻ Result calculation is not required.

b Results reported from vendor for two periods are averaged to estimate an annual average radon concentration (pCi/L).

The average annual WL is calculated by dividing the average pCi/L by 100 pCi/L per WL and multiplying by 0.4. The average annual WL must be less than 0.02 (40 CFR 192.12(b)).

St. Louis Downtown Site Annu	ıal Environmental Monitorir	ng Data and Analysis Rend	ort for CY 2020	
		-8		
ר	THIS PAGE INTEN	TIONALLY LEF	ΓBLANK	

2-6 REVISION 0

3.0 EXCAVATION WATER MONITORING DATA

This section provides a description of the excavation water discharge monitoring activities conducted at the SLDS during CY 2020. Excavation water is stormwater and groundwater that accumulates in excavations present at the SLDS as a result of RAs. Excavation water effluent from the SLDS is discharged to combined (sanitary and storm) MSD sewer inlets located at the SLDS. It then flows to the Bissell Point Sewage Treatment Plant under a special discharge authorization. This excavation water was collected, treated, and tested before being discharged to MSD manholes 17D4-353C, 17D3-022C, and 18D1-657C. These MSD manholes are depicted on Figure 3-1.

The purpose of excavation water discharge monitoring at the SLDS is to maintain compliance with specific discharge limits to ensure protection of human health and the environment. The MSD is the regulatory authority for water discharges and has issued authorization letters for the SLDS allowing discharges of excavation water that meets discharge-limit-based criteria (MSD 1998, 2001, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020). On October 30, 1998, the USACE received an MSD conditional authorization letter to discharge the excavation water collected at the SLDS resulting from USACE RAs (MSD 1998). On July 23, 2001, the MSD issued a separate conditional discharge authorization letter for discharges of excavation water resulting from USACE RAs (MSD 2001). The MSD issued a change to the self-monitoring and special discharge authorization for the SLDS on October 13, 2004, and issued a 2-year extension to that authorization dated June 19, 2006 (MSD 2004, 2006). On May 22, 2008; May 10, 2010; May 24, 2012; June 23, 2014; July 18, 2016; and June 11, 2018, the MSD issued extensions to the special discharge authorization for the SLDS that remained in effect until July 23, 2010; July 23, 2012; July 23, 2014; July 23, 2016; July 23, 2018; and July 23, 2020, respectively (MSD 2008, 2010, 2012, 2014, 2016, 2018). On July 16, 2020, the MSD issued an extension to the special discharge authorization for the SLDS that remains in effect until July 23, 2022 (MSD 2020). The results obtained from these monitoring activities are presented and evaluated with respect to the discharge limits described in the EMICY20 (USACE 2019).

Section 2.2.2 of the EMICY20 outlines the parameters and annual average discharge limits for the excavation water discharges at the SLDS (USACE 2019). For cases in which the local regulatory authorities have not provided discharge limits for the SLDS radiological contaminants of concern (COCs), parameters from 10 *CFR* 20, Appendix B, water effluent values are used to calculate the sum of ratios (SOR) value for each discharge. Additionally, the SOR aids in the establishment of water management protocols.

3.1 EVALUATION OF EXCAVATION WATER DISCHARGE MONITORING RESULTS AT THE ST. LOUIS DOWNTOWN SITE

During CY 2020, 1,225,388 gallons of excavation water from 16 batches were discharged to MSD manholes 17D4-353C 17D3-022C, and 18D1-657C. The analytical results for all measured parameters by batch, along with the total activity discharged for each parameter, are included in Appendix D, Table D-1. A summary of the number of discharges, gallons of water discharged, and total radiological activity for the CY 2020 excavation water discharges is provided in Table 3-1. All excavation water discharge monitoring required through implementation of the EMICY20 was conducted as planned during CY 2020. The evaluation of monitoring data demonstrates compliance with all MSD criteria.

3-1 REVISION 0

Table 3-1. Excavation Water Discharged at the SLDS in CY 2020

	Number of	Number of Gallons	Total Activity (Ci)				
Quarter	Discharges	Discharged ^a	Thorium ^b	Uranium (KPA) ^c	Radium ^d		
1	5	372,629	5.2E-06	1.0E-04	3.9E-06		
2	5	339,004	2.9E-06	5.2E-05	1.6E-06		
3	3	276,545	2.6E-06	3.7E-05	1.3E-06		
4	3	237,210	2.1E-06	1.2E-04	1.9E-06		
Annual Totals	16	1,225,388	1.3E-05	3.1E-04	8.7E-06		

Quantities based on actual quarterly discharges from the SLDS.

3-2 **REVISION 0**

Calculated value based on the addition of isotopic analyses: thorium (Th)-228, Th-230, and Th-232. Activity based on total U results (kinetic phosphorescence analysis [KPA]).

Calculated value based on the addition of isotopic analyses: Ra-226 and Ra-228.

4.0 GROUNDWATER MONITORING DATA

During CY 2020, ten groundwater monitoring wells were sampled at the SLDS. Groundwater was sampled following a protocol for individual wells and analytes, and was analyzed for various radiological constituents and inorganic analytes. Static water levels were measured quarterly at the SLDS. In addition, field parameters were measured continuously during purging of the wells prior to sampling. The groundwater field parameter results for CY 2020 sampling at the SLDS are presented in Appendix E, Table E-1. The SLDS groundwater analytical sampling results for CY 2020 are contained in Appendix E, Table E-2.

Stratigraphy at the St. Louis Downtown Site

Groundwater at the SLDS is found within three hydrostratigraphic units (HUs). These units are, in order of increasing depth, the Upper HU (HU-A), which consists of fill overlying clay and silt; the Lower HU (HU-B), also referred to as the Mississippi Alluvial Aquifer, consisting of sandy silts and silty sands; and the Limestone Bedrock Unit, referred to as HU-C (Figures 4-1 and 4-2). The upper unit, HU-A, is not an aquifer and is not considered a potential source of drinking water, because it has insufficient yield and poor natural water quality. HU-B is one of the principal aquifers in the St. Louis area, but expected future use as drinking water at the SLDS is minimal, because the Mississippi and Missouri Rivers provide a readily available source and the water from the aquifer is of poor quality due to elevated concentrations of iron and manganese. HU-C would be an unlikely water supply source, as it is a deeper and less productive HU. There are no known drinking-water wells in the vicinity of the SLDS. St. Louis City Ordinance 66777 explicitly forbids the installation of wells into the subsurface for the purposes of using groundwater as a potable water supply (City of St. Louis 2005). The expected future use of SLDS groundwater is not anticipated to change from its current use.

As shown in the geologic cross-section of the SLDS (Figure 4-2), the erosional surface of the bedrock dips eastward toward the Mississippi River. HU-A overlies HU-B on the eastern side of the SLDS and bedrock on the western side of the SLDS. HU-B thins westerly along the bedrock surface until it becomes absent beneath the SLDS. HU-C underlies the unconsolidated sediments at depths ranging from 19 ft on the western side of the SLDS to 80 ft near the Mississippi River.

Groundwater Criteria

The CY 2020 monitoring data for HU-B groundwater at the SLDS are compared to the following groundwater criteria established in the ROD: $50~\mu g/L$ arsenic, $5~\mu g/L$ cadmium, $20~\mu g/L$ total U, and 5~pCi/L combined Ra-226 and Ra-228 (USACE 1998a). The ROD did not establish groundwater criteria for HU-A groundwater. An evaluation of concentration trends is conducted for COCs detected in HU-A.

<u>Summary of Calendar Year 2020 Groundwater Monitoring Results for the St. Louis</u> <u>Downtown Site</u>

Trend analysis of the COCs detected in HU-A groundwater indicates no statistically significant trends of the COCs occurred in shallow groundwater during CY 2020.

During CY 2020, two COCs (arsenic and total U) were detected at concentrations above the ROD groundwater criteria in HU-B groundwater. The concentration of arsenic exceeded the investigative limit (IL) (50 μ g/L) in the samples collected in the fourth quarter of CY 2020 from HU-B wells DW14 (250 μ g/L) and DW18 (84 μ g/L). The concentration of total U exceeded the IL (20 μ g/L) in the three samples collected in CY 2020 from DW19RD, the HU-B replacement well for DW19. The total U concentrations detected in the CY 2020 samples from DW19RD varied

4-1 REVISION 0

from 174.4 μ g/L (May 2020) to 113.6 μ g/L (November 2020). The average total U concentration detected at DW19RD since well installation (94.3 μ g/L) is similar to the average concentration detected in the samples collected at DW19 prior to its decommissioning (87.0 μ g/L).

These CY 2020 sampling results, combined with previous sampling results since 1999, were used to identify any significant trends. The Mann-Kendall Trend Test results for HU-B groundwater indicate a statistically significant upward trend in arsenic concentrations in DW16 and DW18; and a statistically significant downward trend in arsenic concentrations in DW14. No statistically significant trends in total U concentrations were identified in the HU-B groundwater. However, total U concentrations in groundwater samples from monitoring wells DW19 and DW19RD have consistently exceeded the IL of $20~\mu g/L$. No other significant changes in the concentrations of the COCs occurred in HU-B groundwater during CY 2020.

4.1 GROUNDWATER MONITORING AT THE ST. LOUIS DOWNTOWN SITE

The selected remedy presented in the ROD involves excavation and disposal of radiologically contaminated accessible soil and groundwater monitoring. The goal of the groundwater portion of the SLDS remedy is to maintain protection of HU-B and to establish the effectiveness of the source removal action. This goal is achieved by monitoring perimeter wells on a routine basis to ensure there are no significant impacts to HU-B from COCs. The HU-B groundwater results for the SLDS COCs are compared to the following ROD groundwater criteria (USACE 1998a):

- 1. The ILs: 50 μg/L arsenic, 5 μg/L cadmium, and 20 μg/L total U; and
- 2. The concentration limits from the Uranium Mill Tailings Radiation Control Act regulations listed in 40 *CFR* 192.02, Table 1 to Subpart A: 5 pCi/L combined Ra-226 and Ra-228.

The concentration limits for other SLDS COCs listed in 40 *CFR* 192.02, Table 1 to Subpart A (50 µg/L arsenic, 10 µg/L cadmium, and 30 pCi/L combined U-234 and U-238), are not relevant or appropriate because these limits are equal to or less stringent than the ILs.

If monitoring of HU-B indicates that the concentrations of SLDS COCs significantly exceed the above criteria, the ROD requires that a groundwater remedial action alternative assessment (GRAAA) be initiated to further assess the fate and transport of the COCs in HU-B and to determine if additional RAs are necessary. Based on the results of 8 consecutive rounds of quarterly sampling conducted between 1999 and 2001, total U concentrations were above the IL in HU-B well DW19 over an extended period, leading to the initiation of Phase 1 of the GRAAA. The first phase of the GRAAA was completed in CY 2003 (USACE 2003). Phase 1 summarized the sampling data available for each of the monitoring wells completed in HU-B and provided recommendations for further investigation of HU-B. This EMDAR carefully reviews the HU-B data to provide additional information for future phases of the GRAAA. The ROD also specifies that a groundwater monitoring plan will be developed to assess the fate and transport of MED/AEC residual contaminants through and following the RA.

Because HU-A is not considered a potential source of drinking water, the ROD did not establish criteria for HU-A groundwater. An evaluation of concentration trends is conducted for select COCs detected in HU-A groundwater to support assessment of the effectiveness of the RA in the CERCLA 5-year reviews. The results of the trend analysis are presented in Section 4.2.3.

4-2 REVISION 0

4.2 EVALUATION OF GROUNDWATER MONITORING DATA

St. Louis Downtown Site Monitoring Well Network

The EMP monitoring well network for the SLDS is shown on Figure 4-3. The screened HUs for the SLDS groundwater monitoring wells are identified in Table 4-1. Prior to initiating monitoring of HU-B, as specified by the ROD (USACE 1998a), there was no EMP sampling performed at the SLDS. In CY 2020, ten monitoring wells (three HU-A and seven HU-B) were sampled for radionuclides and/or inorganic COCs at the SLDS. Groundwater sampling at the SLDS was conducted on February 6 (first quarter); May 28 (second quarter); August 13 (third quarter); and November 11, 13, 16, 18, and 19 (fourth quarter) of CY 2020. The CY 2020 analytical results for the SLDS are presented in Appendix E, Table E-2. For discussion purposes, the groundwater analytical data acquired from the CY 2020 sampling events at the SLDS are presented separately for HU-A (Section 4.2.1) and HU-B (Section 4.2.2). Appendix F provides the well maintenance checklists for the annual inspection of the SLDS groundwater monitoring wells conducted on March 12, 2020.

Well ID Screened HU B16W06D HU-B B16W06Sa HU-A B16W07D HU-B B16W08Da HU-B B16W08S HU-A HU-B B16W09D B16W12Sa HU-A DW14a HU-B DW15a HU-B HU-B DW16a DW17a HU-B DW18a HU-B DW19RD a,b HU-B DW19RS a,b HU-A DW21 HU-A

Table 4-1. Screened HUs for SLDS Groundwater Monitoring Wells in CY 2020

4.2.1 Evaluation of HU-A Groundwater Monitoring Data

The results of the CY 2020 groundwater sampling of HU-A groundwater at the SLDS are summarized in Table 4-2. During CY 2020, three HU-A monitoring wells (B16W06S, B16W12S, and DW19RS) were sampled. B16W06S was sampled in the fourth quarter for arsenic and cadmium. B16W12S was sampled in the second quarter for arsenic, cadmium, and radionuclides (Ra-226, Ra-228, thorium [Th]-228, Th-230, Th-232, U-234, U-235, and U-238). DW19RS was sampled for arsenic, cadmium, and radionuclides in the second, third, and fourth quarters.

Table 4-2. Analytes Detected in HU-A Groundwater at the SLDS in CY 2020

Analyte	Units	Stationa	Minimum Detected	Maximum Detected	Mean Detected	Frequency of Detection
Arsenic	па/І	B16W06S	330	330	330	1/1
Arsenic	μg/L	DW19RS	4.6	8.6	7.0	3/3
Cadmium	/I	B16W06S	0.54 J	0.54 J	0.54 J	1/1
Cadilliulli	μg/L	DW19RS	0.39 J	0.96 J	0.68 J	2/3

4-3 REVISION 0

Wells sampled in CY 2020.

^b Replacement wells for DW19 were installed and developed in March 2019.

Analyte	Units	Stationa	Minimum Detected	Maximum Detected	Mean Detected	Frequency of Detection
Th-228	pCi/L	DW19RS	0.59 J	0.59 J	0.59 J	1/3
Th-230	nC:/I	B16W12S	0.75 J	0.75 J	0.75 J	1/1
111-230	pCi/L	DW19RS	0.37 J	0.55 J	0.46 J	2/3
U-234	nC:/I	B16W12S	3.12	3.12	3.12	1/1
0-234	pCi/L	DW19RS	1.28 J	14.1	6.17	3/3

0.88 J

2.9

15.7

8.73

47.3

0.88 J

2.9

6.89

8.73

20.7

1/3

1/1

3/3

1/1

3/3

0.88 J

2.9

2.05

8.73

6.1

Table 4-2. Analytes Detected in HU-A Groundwater at the SLDS in CY 2020 (Continued)

DW19RS

B16W12S

DW19RS

B16W12S

DW19RS

U-235

U-238

Total U^b

pCi/L

pCi/L

 $\mu \, g \! / \! L$

The analytes detected in HU-A groundwater in CY 2020 are listed in Table 4-2. The remaining SLDS COCs (Ra-226 and Th-232) were not detected in the three HU-A groundwater wells monitored during CY 2020. Trend analysis was conducted for arsenic in B16W06S and DW19RS, and total U in B16W12S and DW19RS. Because total U values are calculated using the U-234 and U-238 values, the trends in their values should be the same as the total U trend results. Therefore, it was not necessary to perform a separate trend analysis for each of these isotopes for B16W12S and DW19RS. Because the majority of their historical results were near or below their detection limits (DLs), a trend analysis was not performed for cadmium, Th-228, or Th-230 in B16W06S, B16W12S, or DW19RS.

Based on the graphs and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), there were no statistically significant trends in the COCs in the HU-A groundwater for the wells sampled in CY 2020. Time-versus-concentration plots for arsenic and total U are provided on Figure 4-4 and Figure 4-5, respectively.

4.2.2 Evaluation of HU-B Groundwater Monitoring Data

During CY 2020, seven SLDS wells completed in the HU-B were monitored for various parameters, including the COCs arsenic, cadmium, Ra-226, Ra-228, Th-228, Th-230, Th-232, U-234, U-235, and U-238. Detected concentrations were compared to the respective ROD groundwater criteria. Table 4-3 lists the analytes detected in HU-B groundwater during CY 2020 and compares the results with the ROD groundwater criteria.

Table 4-3. Analytes Detected in HU-B Groundwater at the SLDS in CY 2020

Criteri		D Groundwater Criteria	Units Station ^b		Minimum	Maximum	Mean	Number of Detects > ROD	Frequency
•	ILa	40 <i>CFR</i> 192.02, Table 1, Subpart A	Units	Station	Detected	Detected	Detected	Groundwater Criteria	of Detection
		NA	μg/L	B16W08D	19	19	19	0	1/1
				DW14	250	250	250	1	1/1
Arcania	50			DW16	21	21	21	0	1/1
Arsenic	30			DW17	12	12	12	0	1/1
				DW18	84	84	84	1	1/1
				DW19RD	19	20	19.6	0	3/3

4-4 REVISION 0

Table lists only those stations at which the analyte was detected in HU-A groundwater.

Total U values were calculated from isotopic concentrations in pCi/L and converted to μg/L using radionuclide-specific activities and assuming secular equilibrium.

Validation qualifier (VQ) symbol indicates: "J" analyte was identified as estimated quantity.

Table 4-3. Analytes Detected in HU-B Groundwater at the SLDS in CY 2020 (Continued)

Analyte	RO	D Groundwater Criteria 40 CFR 192.02, Table 1, Subpart A	Units	Station ^b	Minimum Detected	Maximum Detected	Mean Detected	Number of Detects > ROD Groundwater Criteria	Frequency of Detection
		•		B16W08D	0.51	0.51	0.51	0	1/1
				DW14	2.7	2.7	2.7	0	1/1
C - 4	5	NTA	/T	DW15	3.2	3.2	3.2	0	1/1
Cadmium	3	NA	μg/L	DW16	0.52	0.52	0.52	0	1/1
				DW17	2.1	2.1	2.1	0	1/1
				DW19RD	0.88	0.88	0.88	0	1/3
Ra-226	NAc	5 ^d	pCi/L	DW19RD	0.63 J	0.63 J	0.63 J	0	1/3
Th 229	Th-228 NA NA	pCi/L	B16W08D	0.34 J	0.63 J	0.48 J	NA	2/2	
Th-228	NA	IVA	pCI/L	DW19RD	0.37 J	0.44 J	0.41 J	NA	2/3
		NA	pCi/L	B16W08D	0.80 J	0.81 J	0.81 J	NA	2/2
Th-230	NA			DW15	0.45 J	0.45 J	0.45 J	NA	1/1
111-230	INA			DW17	0.62 J	0.62 J	0.62 J	NA	1/1
				DW19RD	0.45 J	0.65 J	0.55 J	NA	3/3
				B16W08D	0.34 J	0.34 J	0.34 J	NA	1/2
U-234	NA	NA	pCi/L	DW17	0.88 J	0.88 J	0.88 J	NA	1/1
				DW19RD	36.4	57.6	48.8	NA	3/3
U-235	NA	NA	pCi/L	DW19RD	2.19	3.91	3.01	NA	3/3
				B16W08D	0.54 J	0.54 J	0.54 J	NA	1/2
U-238	NA	NA	pCi/L	DW17	0.97 J	0.97 J	0.97 J	NA	1/1
				DW19RD	37.7	57.8	50.8	NA	3/3
				B16W08D	0.70	1.61	1.16	0	2/2
Total Ue	20	NA	μg/L	DW17	2.89	2.89	2.89	0	1/1
				DW19RD	113.6	174.4	152.9	3	3/3

a USACE 1998a

VQ symbol indicates: "J" analyte was identified as estimated quantity.

During CY 2020, one inorganic SLDS COC, arsenic, was detected at concentrations above its ROD groundwater criterion in HU-B groundwater. The concentration of arsenic exceeded the IL (50 μ g/L) in the November 2020 samples from DW14 (250 μ g/L) and DW18 (84 μ g/L). The time-versus-concentration plots for arsenic in DW14 and DW18 are provided on Figure 4-4.

One radiological COC, total U, exceeded its ROD groundwater criteria in HU-B groundwater at the SLDS during CY 2020. The concentration of total U exceeded the IL ($20~\mu g/L$) in the three samples collected in CY 2020 from DW19RD, the HU-B replacement well for DW19. The concentration of total U had exceeded the IL in the annual groundwater samples collected from DW19 since installation of the well in CY 1999. On August 3, 2016, DW19 was plugged and abandoned so that remediation activities could be conducted in that area. In March 2019, after the remediation activities were completed, DW19RD was installed to allow continued assessment of contaminant concentration trends in HU-B in this area. The total U concentrations detected in the CY 2020 samples from DW19RD varied from 174.4 μ g/L (May 2020) to 113.6 μ g/L (November 2020). The overall average total U concentration detected at DW19RD (94.3 μ g/L) is similar to the average concentration detected in the samples collected at DW19 prior to its decommissioning (87.0 μ g/L). The total U concentration trends in unfiltered groundwater at the SLDS are shown on Figure 4-5.

4-5 REVISION 0

Table lists only those stations at which the analyte was detected in HU-B groundwater.

Although the ROD does not reference an IL for Ra-226, it does reference the maximum constituent concentration listed in Table 1 of 40 CFR 192.02, Subpart A.

d Concentration limit for combined Ra-226 and Ra-228.

Total U values were calculated from isotopic concentrations in pCi/L and converted to μ g/L using radionuclide-specific activities and assuming secular equilibrium.

NA – not appropriate. (No IL is specified or the concentration limits specified in Table 1 of 40 *CFR* 192.02, Subpart A, are the same or less stringent than the IL and thus not relevant or appropriate.)

Based on the time-versus-concentrations plots and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), three statistically significant trends were identified in HU-B groundwater. There are statistically significant upward trends in arsenic concentrations in DW16 and DW18. A statistically significant downward trend in arsenic was identified in DW14. Expanded versions of the time-versus-concentration plots are provided on Figure 4-6 for arsenic in DW14, DW16, and DW18. Because the majority of their historical results were near or below their DLs, a trend analysis was not performed for cadmium, Ra-226, Th-228, or Th-230 in HU-B groundwater.

Based on the time-versus-concentrations plots and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), a statistically significant trend was not identified in the total U concentrations in DW19RD. Because total U values are calculated using the U-234 and U-238 values, the trends in their values should be the same as the total U trend results. Therefore, it was not necessary to perform a separate trend analysis for each of these isotopes. The total U concentrations detected in DW19RD during CY 2020 exceed the corresponding IL ($20 \mu g/L$), as did the four samples collected from this well in CY 2019. An expanded version of the time-versus-concentration plot for total U in DW19 and its replacement well DW19RD is provided on Figure 4-6.

4.2.3 Comparison of Historical Groundwater Data at the St. Louis Downtown Site

A quantitative evaluation of COC concentration trends in SLDS groundwater was conducted based on available sampling data for the period from January 1999 through December 2020. The Mann-Kendall Trend Test was used to evaluate possible trends for those COCs detected in HU-A and for those COCs that exceeded ROD groundwater criteria in HU-B during CY 2020. The Mann-Kendall Trend Test was not conducted for those COCs with a detection frequency less than 50 percent or historical results generally within the range of measurement error of their DLs. For HU-A, a trend analysis was conducted for arsenic in B16W06S and DW19RS; and total U in B16W12S and DW19RS. A trend analysis was not performed for cadmium, Th-228, or Th-230 in B16W06S, B16W12S, or DW19RS because the historical results were generally below or only slightly above the DLs. The Mann-Kendall Trend Test was conducted for two COCs that exceeded the ILs in HU-B wells during CY 2020: arsenic in DW14, DW16, DW18, and DW19RD; and total U in DW19RD. Although the concentrations of arsenic in HU-B wells DW16 and DW19RD did not exceed the IL, the Mann-Kendall Trend Test was performed to further evaluate the constituent concentration trends in these wells.

Statistical Method and Trend Analysis

Several statistical methods are available to evaluate contaminant trends in groundwater. These include the Mann-Kendall Trend Test, the Wilcoxon Rank Sum (WRS) Test, and the Seasonal Kendall Test (USEPA 2000). The latter two tests are applicable to data that may or may not exhibit seasonal behavior, but generally require larger sample sizes than the Mann-Kendall Trend Test. The Mann-Kendall Trend Test was selected for this project because this test can be used with small sample sizes (as few as four data points with detect values) and because a seasonal variation in concentrations was not indicated by the time-versus-concentration plots at the SLDS. The Mann-Kendall Trend Test is a non-parametric test and, as such, is not dependent upon assumptions of distribution, missing data, or irregularly-spaced monitoring periods. In addition, data reported as being less than the DL can be used (Gibbons 1994). The test can assess whether a time-ordered dataset exhibits an increasing or decreasing trend, within a predetermined level of significance. While the Mann-Kendall Trend Test can use as few as four data points, often this is not enough data to detect a trend. Therefore, the test was performed only at those monitoring stations where data have been collected for at least six sampling events.

4-6 REVISION 0

A customized Microsoft Excel® spreadsheet was used to perform the Mann-Kendall Trend Test. The test involves listing the sampling results in chronological order and computing all differences that may be formed between current measurements and earlier measurements. The value of the test statistic (S) is the difference between the number of strictly positive differences and the number of strictly negative differences. If S is a large positive value, then there is evidence of an increasing trend in the data. If S is a large negative value, then there is evidence of a decreasing trend in the data. If there is no trend and all observations are independent, then all rank orderings of the annual statistics are equally likely (USEPA 2000). The results of the Mann-Kendall Trend Test are reported in terms of a p value or Z-score, depending on sample size, N. If the sample size is less than or equal to 10, then the p value is computed. If the p value is less than or equal to 0.05, the test concludes that the trend is statistically significant. If the p value is greater than 0.05, the test concludes there is no evidence of a significant trend. For dataset sizes larger than 10, the Z-score is compared to ± 1.64 , which is the comparison level at a 95 percent confidence level. If the Z-score is greater than +1.64, the test concludes that a significant upward trend exists. If the Z-score is less than -1.64, the test concludes that a significant downward trend exists. For Z-scores between -1.64 and +1.64, there is no statistical evidence of a significant trend.

The results of the Mann-Kendall Trend Test are less reliable for datasets containing high numbers of non-detects, particularly if the DL changes over time. Thus, for datasets for which more than 50 percent of the time-series data are non-detect, the Mann-Kendall Trend Test was not conducted. There is no general consensus regarding the percentage of non-detects that can be handled by the Mann-Kendall Trend Test. However, because the Mann-Kendall Trend Test is a nonparametric test that uses relative magnitudes and not actual values, it is generally valid even in cases in which there are large numbers of non-detects.

Only unfiltered data were used, and split sample and QC sample results were not included in the database for the Mann-Kendall Trend Test. The Mann-Kendall Trend Test is used to evaluate the data and determine trends without regard to isotopic analysis. In addition, for monitoring wells for which the Mann-Kendall Trend Test has indicated a trend (either upward or downward), another analysis is performed to determine if the trend is due to inherent error associated with the analytical test method for each sample analysis. For this analysis, graphs are generated to depict the trends, if present, and the range of associated measurement error.

Results of Trend Analysis for Groundwater at the St. Louis Downtown Site

The Mann-Kendall Trend Test results are provided in Table 4-4. Time-versus-concentration plots for those wells and analytes exhibiting a statistically significant trend based on the Mann-Kendall Trend Test results (i.e., arsenic in DW14, DW16, and DW18) are provided on Figure 4-6. Although the Mann-Kendall Trend Test did not identify a trend in the total U results in DW19RD, a time-versus-concentration plot is provided on Figure 4-6 for this replacement well for DW19.

Table 4-4. Results of Mann-Kendall Trend Test for SLDS Groundwater in CY 2020

Amaluta	Analyte Station H		Na	Test Sta	atistics ^{b,c}	- Trend ^d
Analyte	Station	HU	11	S	Z	Trena
	B16W06S	HU-A	26	-19	-0.40	No Trend
	DW14	HU-B	25	-106	-2.46	Downward Trend
Arsenic	DW16	HU-B	28	173	3.40	Upward Trend
Arsenic	DW18	HU-B	33	309	4.77	Upward Trend
	DW19RD	HU-B	7	9	0.5	No Trend
	DW19RS	HU-A	7	3	0.386	No Trend

4-7 REVISION 0

Table 4-4. Results of Mann-Kendall Trend Test for SLDS Groundwater in CY 2020 (Continued)

Analyte Station		HU	Na	Test Sta	atistics ^{b,c}	- Trend ^d
Analyte	Station	nu	11	S	Z	1 rena
	B16W12S	HU-A	18	43	1.59	No Trend
Total U	DW19RD	HU-B	7	11	0.068	No Trend
	DW19RS	HU-A	7	5	0.281	No Trend

N is the number of unfiltered groundwater sample results for a particular analyte at the well over a particular time period. The time period is between January of 1999 and December of 2020.

Inorganics

Based on the results of the Mann-Kendall Trend Test, one well exhibits a significant downward trend for arsenic (HU-B well DW14), and two wells exhibit significant upward trends for arsenic (HU-B wells DW16 and DW18). Because the Mann-Kendall Trend Test does not consider the effects of measurement error and does not provide any information concerning the magnitude of the trend, time-versus-concentration plots of arsenic in DW14, DW16, and DW18 were used to evaluate these factors (Figure 4-6). The plots also show the best-fit trend lines based on the data scatter. No other significant changes in the concentrations of the inorganic COCs occurred in HU-A or HU-B groundwater during CY 2020.

Radionuclides

The Mann-Kendall Trend Test results indicate there is no trend in total U concentration in HU-A wells B16W12S and DW19RS; and HU-B well DW19RD. The time-versus-concentration plots for B16W12S, DW19RS, and DW19RD are provided on Figure 4-5. The maximum concentration of total U in B16W12S, DW19RS, and DW19RD in CY 2020 were 8.7 μ g/L, 47.3 μ g/L, and 174.4 μ g/L, respectively. The total U concentration in DW19RD exceeded the corresponding IL for HU-B groundwater (20 μ g/L). An expanded version of the time-versus-concentration plot for total U in DW19 and its replacement well DW19RD is provided on Figure 4-6. The best-fit trend line included on the time-versus concentration plot for total U in DW19 and DW19RD confirms there is no significant trend in the results.

4.2.4 Evaluation of Potentiometric Surface at the St. Louis Downtown Site

Groundwater elevations were measured in monitoring wells at the SLDS in February, May, August, and November of CY 2020. Potentiometric surface maps were created from the May and November measurements to illustrate groundwater flow conditions in wet and dry seasons, respectively. The potentiometric maps for both HU-A and HU-B are presented on Figures 4-7 through 4-10.

The groundwater surface in HU-A under the eastern portion of the Mallinckrodt plant typically slopes northeast toward the Mississippi River. Comparison of Figure 4-7 (May) with Figure 4-9 (November) indicates groundwater flow patterns in HU-A were consistent for the wet and dry season conditions during CY 2020. During CY 2020, the HU-A potentiometric surface elevations averaged approximately 11.3 ft higher during the wet season (May) than during the dry season (November). As a result of the flood conditions in May, the largest seasonal differences were observed in the two wells closest to the river (B16W06S and B16W08S), where water levels were approximately 17 ft higher in May than during November.

4-8 REVISION 0

Mann-Kendall Trend Tests were performed at a 95 percent level of confidence. For non-radiological data, non-detected results were replaced with one half of the lowest DL.

^c Test Statistics: S – S-statistic, Z – Z-score, or normalized test statistic (used if N>10).

Trend: The Z-score is compared to ± 1.64 to determine trend significance.

As shown on Figures 4-8 and 4-10, the groundwater flow patterns in HU-B are strongly influenced by river stage. This indicates that groundwater in HU-B is hydraulically connected to the Mississippi River. The flow direction in HU-B is generally north-northeasterly toward the river in both the wet and dry seasons. A localized groundwater depression was observed in the vicinity of the two HU-B wells DW18 and B16W07D, likely due to decreased recharge from the river and decreased seepage from overlying HU-A in that area. The HU-B groundwater elevations averaged approximately 21.5 ft higher on May 27 than on November 11, 2020; this generally corresponds to the difference in the daily river stage, which was approximately 22.3 ft higher on May 27 (405.8 ft above mean sea level [amsl]) than on November 11 (383.5 ft amsl).

4-9 REVISION 0

	4.10	DEVISION
	THE THE THE THE TENT OF THE TE	
	THIS PAGE INTENTIONALLY LEFT BLANK	
St. Louis Downtown Site Ar	nnual Environmental Monitoring Data and Analysis Report for CY 2020	

REVISION 0 4-10

5.0 ENVIRONMENTAL QUALITY ASSURANCE PROGRAM

5.1 PROGRAM OVERVIEW

The environmental quality assurance (QA) program includes management of the QA and QC programs, plans, and procedures governing environmental monitoring activities at all SLS and at subcontracted vendor laboratories. This section describes the environmental monitoring standards of the FUSRAP and the goals for these programs, plans, and procedures.

The environmental QA program provides the FUSRAP with reliable, accurate, and precise monitoring data. The program furnishes guidance and directives to detect and prevent problems from the time a sample identification number is issued until the associated data are evaluated.

Key elements in achieving the goals of this program are maintaining compliance with the QA program; personnel training; compliance assessments; use of QC samples; documentation of field activities and laboratory analyses; and a review of data documents for precision, accuracy, and completeness.

General objectives are as follows:

- To provide data of sufficient quality and quantity to support ongoing remedial efforts, to aid in defining potential COCs, to meet the requirements of the EMG (USACE 1999a) and the *Sampling and Analysis Guide for the St. Louis Sites* (SAG) (USACE 2000), and to support the ROD (USACE 1998a);
- To provide data of sufficient quality to meet applicable State of Missouri and federal concerns (e.g., reporting requirements); and
- To ensure samples were collected using approved techniques and are representative of existing site conditions.

5.2 QUALITY ASSURANCE PROGRAM PLAN

The quality assurance program plan (QAPP) for activities performed at the SLDS is described within Section 3.0 of the SAG. The QAPP provides the organization, objectives, functional activities, and specific QA/QC activities associated with investigations and sampling activities at the SLDS.

QA/QC procedures are performed in accordance with applicable professional technical standards, USEPA requirements, government regulations and guidelines, and specific project goals and requirements. The QAPP was prepared in accordance with USEPA and USACE guidance documents, including *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans* (USEPA 1991), *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations* (USEPA 1994), and Engineer Manual (EM) 200-1-3, *Requirements for the Preparation of Sampling and Analysis Plans* (USACE 2001).

5.3 SAMPLING AND ANALYSIS GUIDE

The SAG summarizes standard operating procedures (SOPs) and data quality requirements for collecting and analyzing environmental data. The SAG integrates protocols and methodologies identified under various USACE and regulatory guidance. It describes administrative procedures for managing environmental data and governs sampling plan preparation, data review, evaluation and validation, database administration, and data archiving. The identified sampling and monitoring structures are delineated in programmatic documents such as the EMG (USACE 1999a), which is

5-1 REVISION 0

an upper tier companion document to the SAG (USACE 2000). The EMICY20 outlines the analyses to be performed at each site for various media (USACE 2019).

Flexibility to address non-periodic environmental sampling (e.g., specific studies regarding environmental impacts, well installations, and/or in-situ waste characterizations) was accomplished by the issuance of work descriptions. Environmental monitoring data obtained during these sampling activities were reported to USEPA Region 7 on a quarterly basis.

5.4 FIELD SAMPLE COLLECTION AND MEASUREMENT

Prior to beginning field sampling, field personnel were trained, as necessary, and participated in a project-specific readiness review. These activities ensured that standard procedures were followed in sample collection and completion of field logbooks, chain-of-custody forms, labels, and custody seals. Documentation of training and readiness was submitted to the project file.

The master field investigation documents are the site field logbooks. The primary purpose of these documents is to record each day's field activities; personnel on each sampling team; and any administrative occurrences, conditions, or activities that may have affected the fieldwork or data quality of any environmental samples for any given day. Guidance for documenting specific types of field sampling activities in field logbooks or log sheets is provided in Appendix C of EM 200-1-3 (USACE 2001).

At any point in the process of sample collection or data and document review, a non-conformance report may be initiated if non-conformances are identified (Leidos 2015a). Data entered into the St. Louis FUSRAP database may be flagged accordingly.

5.5 PERFORMANCE AND SYSTEM AUDITS

Performance and system audits of both field and laboratory activities were conducted to verify that sampling and analysis activities were performed in accordance with the procedures established in the SAG and activity-specific work description or the EMICY20 (USACE 2019).

5.5.1 Field Assessments

Internal assessments (audit or surveillance) of field activities (sampling and measurements) were conducted by the QA/QC Officer (or designee). Assessments included an examination of field sampling records; field instrument operating records; sample collection, handling, and packaging procedures; and maintenance of QA procedures and chain-of-custody forms. These assessments occurred at the onset of the project to verify that all established procedures were followed (systems audit).

Performance assessments followed the systems audit to ensure that deficiencies had been corrected and to verify that QA practices/procedures were being maintained throughout the duration of the project. These assessments involved reviewing field measurement records, instrumentation calibration records, and sample documentation.

External assessments may be conducted at the discretion of the USACE, USEPA Region 7, or the MDNR.

5.5.2 Laboratory Audits

The on-site FUSRAP St. Louis Radioanalytical Laboratory locations are subject to periodic review(s) by the local USACE Chemist to demonstrate compliance with the *Department of*

5-2 REVISION 0

Defense/Department of Energy Consolidated Quality Systems Manual for Environmental Laboratories (QSM) (DOD and DOE 2017). Accordingly, the on-site laboratories participate in blind, third-party performance evaluation studies (performance audits) at least twice per year, with results reported to the local USACE point(s) of contact. In addition, contract laboratories are required to be accredited under the DOD Environmental Laboratory Accreditation Program (ELAP). The DOD ELAP requires an annual audit and re-accreditation every 3 years. The DOD ELAP audit timeframe was changed/accelerated in CY 2020 due to the relocation of the laboratory. The USACE operated the on-site laboratory located at 8945 Latty Avenue in Hazelwood, Missouri, until March 4, 2020. From March 4, 2020 through March 13, 2020, USACE moved the FUSRAP St. Louis Radioanalytical Laboratory equipment and operations from the 8945 Latty Avenue location to the SLAPS at 112 James S McDonnell Boulevard, Hazelwood, Missouri where laboratory operations formally started on March 9, 2020. After all lab setup and required information was provided to the accrediting body, ANSI National Accreditation Board (ANAB), the ELAP audit was performed in July 2020.

These system audits include examining laboratory documentation of sample receipt, sample log-in, sample storage, chain-of-custody procedures, sample preparation and analysis, and instrument operating records. Performance audits consist of USACE laboratories receiving performance evaluation samples from an outside vendor for an ongoing assessment of laboratory precision and accuracy. The analytical results of the analysis of performance evaluation samples are evaluated by the local USACE Chemist to ensure that laboratories maintain acceptable performance.

Internal performance and system audits of laboratories were conducted by the Laboratory QA Manager as directed in the *Laboratory Quality Assurance Plan for the FUSRAP St. Louis Radioanalytical Laboratory* (USACE 2018). System audits included an examination of laboratory documentation of sample receipt, sample log-in, sample storage, chain-of-custody procedures, sample preparation and analysis, and instrument operating records against the requirements of the laboratory's SOPs. Internal performance audits were also conducted on a regular basis. Single-blind performance samples were prepared and submitted along with project samples to the laboratory for analysis. The Laboratory QA Manager evaluated the analytical results of these single-blind performance samples to ensure that the laboratory maintained acceptable performance. Quarterly QA/QC reports were generated and provided to the local USACE authority – the reports document the ongoing QC elements and provide for further monitoring of quality processes/status. Also, QA plans and methodology follow the guidance presented in the QSM (DOD and DOE 2017).

5.6 SUBCONTRACTED LABORATORY PROGRAMS

All samples collected during environmental monitoring activities were analyzed by USACE-approved subcontractor laboratories. QA samples were collected for groundwater and soil, and samples were analyzed by the designated USACE QA laboratory. Each laboratory supporting this work maintained statements of qualifications, including organizational structure, QA Manual, and SOPs. Additionally, subcontracted laboratories are also required to be an accredited laboratory under the DOD ELAP.

Samples collected during these investigations were analyzed by the USEPA methods contained in *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846*, (USEPA 1993) and by other documented USEPA or nationally recognized methods. Laboratory SOPs are based on the QSM (DOD and DOE 2017).

5-3 REVISION 0

5.7 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

QA/QC samples were collected and analyzed for the purpose of assessing the quality of the sampling effort and the reported analytical data. QA/QC samples include duplicate samples (–1) and split samples (–2). The equation utilized for accuracy and precision can be found in Section 5.9.

5.7.1 Duplicate Samples

Duplicate samples measure precision and were collected by the sampling teams. Samples were submitted for analysis to the on-site project laboratory or contract laboratories. The identity of duplicate samples is held blind to the analysts, and the purpose of these samples is to provide activity-specific, field-originated information regarding the homogeneity of the sampled matrix and the consistency of the sampling effort. These samples were collected concurrently with the primary environmental samples and equally represent the medium at a given time and location. Duplicate samples were collected from each medium addressed by this project and were submitted to the contracted laboratories for analysis. Approximately one duplicate sample was collected for every 20 field samples of each matrix and analyte across the SLS. Precision is measured by the relative percent difference (RPD) for radiological and non-radiological analyses or by the normalized absolute difference (NAD) for radiological analyses.

The RPDs for non-radiological analyses are presented in Table 5-1. The RPDs and NADs for radiological analyses are presented in Table 5-2. The overall precision for the CY 2020 environmental monitoring activities was acceptable. See Section 5.9 for the evaluation process.

Table 5-1. Non-Radiological Duplicate Sample Analysis for CY 2020 – Groundwater

Cuana danatan Camala Namasa	Arsenic	Cadmium
Groundwater Sample Name ^a	RPD ^b	RPD ^b
SLD228901 / SLD228901-1	5.13	NC

Groundwater samples ending in "-1" are duplicate groundwater samples.

Table 5-2. Radiological Duplicate Sample Analysis for CY 2020 – Groundwater

Cucundaretor Comple Namel	Ra-226		Ra-228		Th-228		Th-230	
Groundwater Sample Name ^a	RPD ^b	NAD						
SLD228901 / SLD228901-1	NC	NA	*	*	NC	NA	55.19	0.59
Cuandratar Cample Namel	Th-232		U-234		U-235		U-238	
Groundwater Sample Name ^a	RPD ^b	NAD						
SLD228901 / SLD228901-1	NC	NA	14.93	NA	14.99	NA	18.04	NA

Groundwater samples ending in "-1" are duplicate groundwater samples.

NA – not applicable (see RPD)

NC – not calculated (due to one or both concentrations being below MDCs)

5.7.2 Split Samples

Split samples measure accuracy and were collected by the sampling team and sent to a USACE QA laboratory for analysis to provide an independent assessment of contractor and subcontractor laboratory performance. Approximately one split sample was collected for every 20 field samples of each matrix for non-radiological and radiological analytes across the SLS. The RPDs and NADs for non-radiological analyses are presented in Table 5-3. The RPDs and NADs for radiological

5-4 REVISION 0

RPD criterion for liquid samples is less than or equal to 30 percent.

NC – not calculated (due to one or both concentrations being below MDCs)

RPD criterion for liquid samples is less than or equal to 30 percent. If the RPD is greater than 30 percent, then the NAD shall be less than or equal to 1.96 to remain within the control limits.

^{*} Not calculated because either the parent or split sample was not analyzed.

analyses are presented in Table 5-4. The overall accuracy for CY 2020 environmental monitoring activities was acceptable. See Section 5.9 for the evaluation process.

Table 5-3. Non-Radiological Split Sample Analysis for CY 2020 – Groundwater

Cuoundruston Comple Nomes	Arsenic	Cadmium
Groundwater Sample Name ^a	RPD ^b	RPD ^b
SLD228901 / SLD228901-2	1.57	NC

Groundwater samples ending in "-2" are split groundwater samples.

Table 5-4. Radiological Split Sample Analysis for CY 2020 – Groundwater

Crowndayatan Cample Name	Ra-226		Ra-228		Th-228		Th-230	
Groundwater Sample Name ^a	RPD ^b	NAD	$\mathbf{RPD^b}$	NAD	$\mathbf{RPD}^{\mathrm{b}}$	NAD	RPD ^b	NAD
SLD228901 / SLD228901-2	34.35	0.40	*	*	NC	NA	NC	NA
Crossed drug ton Commission Normal	Th-	232	U-2	234	U-2	235	U-2	238
Groundwater Sample Name ^a	RPD ^b	RPD ^b NAD		NAD	RPD ^b	NAD	RPD ^b	NAD
SLD228901 / SLD228901-2	NC	NA	5.53	NA	3.67	NA	4.68	NA

a Groundwater samples ending in "-2" are split groundwater samples.

NC – not calculated (due to one or both concentrations being below MDCs)

5.7.3 Equipment Rinsate Blanks

Equipment rinsate blank samples are typically taken from the rinsate water collected from equipment decontamination activities. These samples consist of analyte-free water that has been rinsed over sampling equipment for the purposes of evaluating the effectiveness of equipment decontamination. All of the monitoring wells have dedicated sampling equipment, rendering decontamination unnecessary. Because decontamination does not apply, equipment rinsate blanks were not employed.

5.8 DATA REVIEW, EVALUATION, AND VALIDATION

All data packages received from the analytical laboratory were reviewed and either evaluated and/or validated by data management personnel. Data validation is the systematic process of ensuring that the precision and accuracy of the analytical data are adequate for their intended use. Validation was performed in accordance with *Data Verification and Validation* (Leidos 2015b), and/or with project-specific guidelines. General chemical data quality management guidance found in Engineer Regulation (ER)-1110-1-263 (USACE 1998b) was also used when planning for chemical data management and evaluation. Additional details of data review, evaluation, and validation are provided in the *FUSRAP Laboratory Data Management Process for the St. Louis Site* (USACE 1999b). Data assessment guidance to determine the usability of data from hazardous, toxic, and radioactive waste projects is provided in EM-200-1-6 (USACE 1997).

One hundred (100) percent of the data generated from all analytical laboratories was independently reviewed and either evaluated or validated. The data review process documents the possible effects on the data from various QC failures; it does not determine data usability, nor does it include assignment of data validation qualifier (VQ) flags. The data evaluation or validation process uses the results of the data review to determine the usability of the data. The process of data evaluation summarizes the potential effects of QA/QC failures on the data, and the USACE District Chemist or District Health Physicist assesses their impact on the attainment of the project-specific data

5-5 REVISION 0

RPD criterion for liquid samples is less than or equal to 30 percent.

NC – not calculated (due to one or both concentrations being below MDCs)

PPD criterion for liquid samples is less than or equal to 30 percent. If the RPD is greater than 30 percent, then the NAD shall be less than or equal to 1.96 to remain within the control limits.

^{*} Not calculated because either the parent or split sample was not analyzed.

NA – not applicable (see RPD)

quality objectives (DQOs). Consistent with the data quality requirements, as defined in the DQOs, approximately 10 percent of all project data were validated.

5.9 PRECISION, ACCURACY, REPRESENTATIVENESS, COMPARABILITY, COMPLETENESS, AND SENSITIVITY

The data evaluation process considers precision, accuracy, representativeness, completeness, comparability, and sensitivity. This section provides detail to the particular parameters and to how the data were evaluated for each, with discussion and tables to present the associated data. An evaluation of the overall precision, accuracy, representativeness, completeness, comparability, and sensitivity of the CY 2020 environmental monitoring activities was acceptable and complete.

Accuracy and precision can be measured by the RPD or the NAD using the following equation:

$$RPD = \left(\frac{\left|S - D\right|}{\frac{S + D}{2}}\right) \times 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

where:

S = Parent Sample Result

D = Duplicate/Split Sample Result

U_S = Parent Sample Uncertainty

U_D = Duplicate/Split Sample Uncertainty

The RPD is calculated for all samples if a detectable result is reported for both the parent and the QA field split or field duplicate. For radiological samples, when the RPD is greater than 30 percent, the NAD is used to determine the accuracy or precision of the method. NAD accounts for uncertainty in the results, RPD does not. The NAD should be less than or equal to 1.96. Neither equation is used when the analyte in one or both of the samples is not detected. In cases in which neither equation can be used, the comparison is counted as acceptable in the overall number of comparisons.

Precision is a measure of mutual agreement among individual measurements performed under the same laboratory controls. To evaluate for precision, a field duplicate is submitted to the same laboratory as the original sample to be analyzed under the same laboratory conditions. The RPD and NAD between the two results was calculated and used as an indication of the precision of the analyses performed (Tables 5-1 and 5-2). Sample collection precision was measured in the laboratory by the analyses of duplicates. The overall precision for the CY 2020 environmental monitoring sampling activities was acceptable.

Accuracy provides a gauge or measure of the agreement between an observed result and the true value for an analysis. The RPD and NAD between the two results was calculated and used as an indication of the accuracy of the analyses performed (Tables 5-3 and 5-4). For this report, accuracy is measured through the use of the field split samples through a comparison of the prime laboratory results versus the results of an independent laboratory. The overall accuracy for CY 2020 environmental monitoring sampling activities was acceptable.

5-6 REVISION 0

Representativeness expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition. Representativeness is a qualitative parameter that depends upon the proper design of the sampling program and proper laboratory protocols. Representativeness is satisfied through proper design of the sampling network, use of proper sampling techniques, following proper analytical procedures, and not exceeding holding times of the samples. Representativeness was determined by assessing the combined aspects of the QA program, QC measures, and data evaluations. The network design was developed from the EMICY20, the sampling protocols from the SAG have been followed, and analytical procedures were conducted within the bounds of the QAPP. The overall representativeness of the CY 2020 environmental monitoring activities was acceptable.

Comparability expresses the confidence with which one dataset can be compared to another. The extent to which analytical data will be comparable depends upon the similarity of sampling and analytical methods, as well as sample-to-sample and historical comparability. Standardized and consistent procedures used to obtain analytical data are expected to provide comparable results. For example, post-CY 1997 analytical data may not be directly comparable to data collected before CY 1997, because of differences in DQOs. Additionally, some sample media (e.g., stormwater and radiological monitoring) have values that are primarily useful in the present, thus the comparison to historic data is not as relevant. However, the overall comparability of the applicable environmental monitoring data met the project DQOs.

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected to be obtained under normal conditions. It is expected that laboratories will provide data meeting QC acceptance criteria for all samples tested. For the CY 2020 environmental monitoring activities, the data completeness was 100 percent (St. Louis FUSRAP DQO for completeness is 90 percent).

Sensitivity is the determination of minimum detectable concentration (MDC) values that allows the investigation to assess the relative confidence that can be placed in an analytical result in comparison to the magnitude or level of analyte concentration observed. For this report, MDC is a term generically used to represent both the method detection limit (MDL) for non-radiological analytes and the minimum detectable activity (MDA) for radiological analytes. The closer a measured value to the MDC, the less confidence and more variation the measurement will have. Project sensitivity goals were expressed as quantitation level goals in the SAG. These levels were achieved or exceeded throughout the analytical process.

The MDC is reported for each result obtained by laboratory analysis. These very low MDCs are achieved through the use of gamma spectroscopy for all radionuclides of concern, with additional analyses from alpha spectroscopy for thorium, and inductively coupled plasma (ICP) for metals. Variations in MDCs for the same radiological analyte reflects variability in the detection efficiencies and conversion factors due to factors such as individual sample aliquot, sample density, and variations in analyte background radioactivity for gamma and alpha spectroscopy, at the laboratory. Variations in MDLs for the same non-radiological analyte reflect variability in calibrations between laboratories, dilutions, and analytical methods. In order to complete the data evaluation (i.e., precision, accuracy, representativeness, and comparability), analytical results that exceed the MDC of the analyte are desired.

5-7 REVISION 0

5.10 DATA QUALITY ASSESSMENT SUMMARY

The overall quality of the data meets the established project objectives. Through proper implementation of the project data review, evaluation, validation, and assessment process, project information has been determined to be acceptable for use.

Data, as presented, have been qualified as usable, but estimated when necessary. Data that have been estimated have concentrations/activities that are below the quantitation limit or are indicative of accuracy, precision, or sensitivity less than desired but adequate for interpretation.

These data can withstand scientific scrutiny, are appropriate for their intended purpose, are technically defensible, and are of known and acceptable precision and accuracy. Data integrity has been documented through proper implementation of QA/QC measures. The environmental information presented has an established confidence, which allows utilization for the project objectives and provides data for future needs.

5.11 RESULTS FOR PARENT SAMPLES AND THE ASSOCIATED DUPLICATE AND SPLIT SAMPLES

Table 5-5. Non-Radiological Parent Samples and Associated Duplicate and Split Samples for CY 2020 – Groundwater

Groundwater	Arsenic ^b			indwater Arsenic ^b Cadmium ^b			
Sample Name ^a	Result	DL	VQ	Result	DL	VQ	
SLD228901	19.00	4.00	=	0.20	0.20	U	
SLD228901-1	20.00	4.00	=	0.38	0.20	J	
SLD228901-2	19.30	0.50	=	0.30	0.30	U	

Samples ending in "-1" are duplicate samples. Samples ending in "-2" are split samples.

Table 5-6. Radiological Parent Samples and Associated Duplicate and Split Samples for CY 2020 – Groundwater

Groundwater		Ra-2	26 ^a			Ra-2	28 ^a			Th-22	28 ^a	
Sample Name ^b	Result	Error	MDC	VQ	Result	Error	MDC	VQ	Result	Error	MDC	VQ
SLD228901	0.63	0.45	0.47	J	*	*	*	*	0.13	0.24	0.52	UJ
SLD228901-1	0.39	0.41	0.72	UJ	*	*	*	*	0.21	0.28	0.54	UJ
SLD228901-2	0.45	0.12	0.08	=	*	*	*	*	0.00	0.12	0.22	UJ
Groundwater		Th-2	30 ^a			Th-23	32 ^a			U-23	4 ^a	
Sample Name ^b	Result	Error	MDC	VQ	Result	Error	MDC	VQ	Result	Error	MDC	VQ
SLD228901	0.45	0.36	0.35	J	0.13	0.23	0.49	UJ	57.60	7.40	0.37	=
SLD228901-1	0.79	0.45	0.43	J	0.01	0.13	0.43	UJ	49.60	6.42	0.41	=
SLD228901-2	0.18	0.19	0.23	UJ	0.04	0.06	0.08	UJ	54.50	5.34	0.26	=
Groundwater		U-23	85 ^a			U-23	8 ^a					
Sample Name ^b	Result	Error	MDC	VQ	Result	Error	MDC	VQ				
SLD228901	2.94	1.14	0.45	=	56.80	7.30	0.61	=				
SLD228901-1	2.53	1.04	0.72	=	47.40	6.18	0.45	=				
SLD228901-2	3.05	0.78	0.31	=	54.20	5.31	0.28	=				

Results are expressed in pCi/L. Negative results are less than the laboratory system's background level.

5-8 REVISION 0

b Result values are expressed in µg/L.

VQ symbols indicate: "=" for positively identified results, "J" analyte was identified as estimated quantity, and "U" for not detected.

Samples ending in "-1" are duplicate samples. Samples ending in "-2" are split samples.

^{*} Data for analyte are not available from laboratory analysis. Ra-228 assumed to be in equilibrium with Th-228.

VQ symbols indicate: "=" for positively identified results, "J" analyte was identified as estimated quantity, and "UJ" analyte was not detected and had QC deficiencies.

6.0 RADIOLOGICAL DOSE ASSESSMENT

This section evaluates the cumulative dose to a hypothetically impacted individual from exposure to radiological contaminants at the SLDS and documents dose trends. The regulatory dose limit for members of the public is 100 mrem per year, as stated in 10 *CFR* 20.1301. Although 10 *CFR* 20.1301 is not an ARAR for the SLDS, the USACE has provided this evaluation to evaluate public exposures from St. Louis FUSRAP cleanup operations. Compliance with the dose limit in §20.1301 can be demonstrated by one of the two following methods (§20.1302(b)(1) and (2)):

- 1. Demonstrating by measurement or calculation that the TEDE to the individual likely to receive the highest dose from SLDS operations does not exceed the annual dose limit (i.e., 100 mrem per year); or
- 2. Demonstrating that: (i) the annual average concentration of radioactive material released in gaseous and liquid effluents at the boundary of the unrestricted area does not exceed the values specified in Table 1 of Appendix B of 10 *CFR* 20; and (ii) if an individual were continuously present in an unrestricted area, the dose from external sources would not exceed 2 mrem per hour.

The USACE has elected to demonstrate compliance by calculation of the TEDE to a hypothetical individual likely to receive the highest dose from the SLDS operations (method 1). This section describes the methodology employed for this evaluation.

Dose calculations are presented for a hypothetical maximally exposed individual at the SLDS. The monitoring data used in the dose calculations are reported in the respective environmental monitoring sections of this EMDAR.

Dose calculations related to airborne emissions, as required by 40 *CFR* 61, Subpart I (*National Emission Standards for Emissions of Radionuclides Other Than Radon From Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered By Subpart H), are presented in Appendix B (the "St. Louis Downtown Site 2020 Radionuclide Emissions NESHAP Report Submitted in Accordance with Requirements of 40 <i>CFR* 61, Subpart I").

6.1 SUMMARY OF ASSESSMENT RESULTS

The TEDE from the SLDS to the receptor from all complete/applicable pathways combined was 0.6 mrem per year, estimated for an individual who works full-time at Thomas & Proetz Lumber Company (DT-10).

Figure 6-1 documents annual dose trends from CY 2000 to CY 2020 at the SLDS. A comparison of the maximum annual dose from CY 2000 to CY 2020 at the SLDS to the annual average natural background dose of approximately 620 mrem per year is provided on Figure 6-2.

6.2 PATHWAY ANALYSIS

Table 6-1 lists the four complete pathways for exposure from SLDS radiological contaminants evaluated by the St. Louis FUSRAP EMP. These pathways are used to identify data gaps in the EMP and to estimate potential radiological exposures from the SLDS. Of the four complete pathways, three were applicable in CY 2020 and were thus incorporated into radiological dose estimates.

6-1 REVISION 0

Table 6-1. Complete Radiological Exposure Pathways for the SLDS

Exposure Pathway	Pathway Description	Applicable to CY 2020 Dose Estimate
Liquid A	Ingestion of groundwater from local wells downgradient from the site.	NA
Airborne A	Inhalation of particulates dispersed through wind erosion and RAs.	Y
Airborne B	Inhalation of Rn-222 and decay products emitted from contaminated soils/wastes.	Y
External	Direct gamma radiation from contaminated soils/wastes.	Y

NA – not applicable for the site

In developing specific elements of the St. Louis FUSRAP EMP, potential exposure pathways of the radioactive materials present on-site are reviewed to determine which pathways are complete. Evaluation of each exposure pathway is based on hypothesized sources, release mechanisms, types, probable environmental fates of contaminants, and the locations and activities of potential receptors. Pathways are then reviewed to determine whether a link exists between one or more radiological contaminant sources, or between one or more environmental transport processes, to an exposure point where human receptors are present. If it is determined that a link exists, the pathway is termed complete. Each complete pathway is reviewed to determine if a potential for exposure was present during CY 2020. If potential for exposure was present, the pathway is termed applicable. Only applicable pathways are considered in estimates of dose.

Table 6-1 shows the pathways applicable to the CY 2020 dose estimates for the SLDS. The Liquid A exposure pathway was not applicable in CY 2020, because the aquifer is of naturally low quality and it is not known to be used for any domestic purpose in the vicinity of the SLDS (DOE 1994).

6.3 EXPOSURE SCENARIOS

Dose calculations were performed for a maximally exposed individual at a critical receptor location for applicable exposure pathways (Table 6-1) to assess dose due to radiological releases from the SLDS. A second set of dose equivalent calculations were performed to meet NESHAP requirements (Appendix B), which were also used for purposes of TEDE calculation.

The scenarios and models used to evaluate these radiological exposures are conservative, but appropriate. Although radiation doses can be calculated or measured for individuals, it is not appropriate to predict the health risk to a single individual using the methods prescribed herein. Dose equivalents to a single individual are estimated by hypothesizing a maximally exposed individual and placing this individual in a reasonable, but conservative scenario. This method is acceptable when the magnitude of the dose to a hypothetical maximally exposed individual is small, as is the case for the SLDS. This methodology provides for reasonable estimates of potential exposure to the public and maintains a conservative approach. The scenarios and resulting estimated doses are outlined in Section 6.4.

6.4 DETERMINATION OF TOTAL EFFECTIVE DOSE EQUIVALENT FOR EXPOSURE SCENARIOS

The TEDE for the exposure scenario was calculated using CY 2020 monitoring data. Calculations for dose scenarios are provided in Appendix G. Dose equivalent estimates are well below the standards set by the U.S. Nuclear Regulatory Commission (NRC) for annual public exposure and USEPA NESHAP limits.

6-2 REVISION 0

Y – applicable for the site

The CY 2020 TEDE for a hypothetical maximally exposed individual near the SLDS is 0.6 mrem per year.

This section discusses the estimated TEDE to a hypothetical maximally exposed individual assumed to frequent the perimeter of the SLDS and receive a radiation dose by the exposure pathways identified in Section 6.2. No private residences are adjacent to the site areas where uranium processing activities occurred. Therefore, all calculations of dose equivalent due to the applicable pathway assume a realistic residence time that is less than 100 percent. A full-time employee business receptor was considered to be the maximally exposed individual from the SLDS.

The exposure scenario assumptions include the following:

- Exposure to radiation from all SLDS sources occurs to the maximally exposed individual while working full-time outside at the receptor location facility located approximately 193 m from the assumed line source. Exposure time is 2,000 hours per year (Leidos 2021b).
- Exposure from external gamma radiation was calculated using environmental TLD monitoring data at the site locations representative of areas accessible to the public between the source and the receptor. The site is assumed to represent a line-source to the receptor (Leidos 2021b).
- Exposure from airborne radioactive particulates was estimated using soil concentration data and air particulate monitoring data to determine a source term, and then running the CAP88-PC modeling code to estimate dose to the receptor (Leidos 2021b).
- Exposure from Rn-222 (and decay chain isotopes) was calculated using ATD monitoring data at the site locations representative of areas accessible to the public between the source and the receptor (Leidos 2021b).

Based on the exposure scenario and assumptions described above, a maximally exposed individual working outside at the receptor location facility received 0.6 mrem per year from external gamma, less than 0.1 mrem per year from airborne radioactive particulates, and less than 0.1 mrem per year from Rn-222, for a TEDE of 0.6 mrem per year (Leidos 2021b). In comparison, the average exposure to natural background radiation in the United States results in a TEDE of approximately 620 mrem per year (NCRP 2009).

6-3 REVISION 0

	6-4	REVISION 0
	THIS TRUE IN TENTION MEET BELL WINNE	
	THIS PAGE INTENTIONALLY LEFT BLANK	
St. Louis Downtown Site A	Annual Environmental Monitoring Data and Analysis Report for CY 2020	
St. Louis Doumtourn Site A	nnual Environmental Manitoring Data and Analysis Papart for CV 2020	

REVISION 0

7.0 REFERENCES

- Cember, H., 1996. Introduction to Health Physics. Mcgraw-Hill, New York, NY. 1996.
- City of St. Louis 2005. City Ordinance 66777, effective August 2005.
- DOD 2000. U.S. Department of Defense, U.S. Department of Energy, U.S. Environmental Protection Agency, and U.S. Nuclear Regulatory Commission. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)*. NUREG 1575. EPA 402-R-97-016. August 2000.
- DOD and DOE 2017. U.S. Department of Defense and U.S. Department of Energy. *Department of Defense (DoD)/Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories*. DOD Quality Systems Manual Version 5.1 and DOE Quality Systems for Analytical Services Version 3.1. 2017.
- DOE 1994. U.S. Department of Energy. *Remedial Investigation Report for the St. Louis Site.* St. Louis, Missouri. DOE/OR/21949-280. January 1994.
- DOE 1995. U.S. Department of Energy. *Remedial Investigation Addendum for the St. Louis Site*. St. Louis, Missouri. DOE/OR/ 21950-132. September 1995.
- Gibbons, Robert D. 1994. *Statistical Methods for Groundwater Monitoring*. John Wiley and Sons, Inc., New York. January 1994.
- Leidos 2015a. Leidos, Inc. Environmental Science & Engineering Operation, Standard Operating Procedure. "Control of Nonconforming Items." ESE A15.1. Revision 0. January 31, 2015.
- Leidos 2015b. Leidos, Inc. *Data Verification and Validation*. Environmental Science & Engineering Operation. Standard Operating Procedure. ESE DM-05. Revision 0. January 31, 2015.
- Leidos 2021a. Leidos, Inc. *Radon Working Levels (WL) at SLDS*. Calculation Package. March 2021.
- Leidos 2021b. Leidos, Inc. Total Effective Dose Equivalent (TEDE) to the Hypothetically Maximally Exposed Individual at SLDS. Calculation Package. March 2021.
- MSD 1998. Metropolitan St. Louis Sewer District. Letter dated October 30, 1998. From Bruce H. Litzsinger, Civil Engineer, to Ken Axetel, International Technology Corporation.
- MSD 2001. Metropolitan St. Louis Sewer District. Letter dated July 23, 2001. From Bruce H. Litzsinger, Civil Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: St. Louis Downtown Site. File: IU Mallinckrodt 21120596-00.
- MSD 2004. Metropolitan St. Louis Sewer District. Letter dated October 13, 2004. From Roland A. Biehl, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. File: IU Mallinckrodt 21120596-00.
- MSD 2006. Metropolitan St. Louis Sewer District. Letter dated June 19, 2006. From Roland A. Biehl, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2008. Metropolitan St. Louis Sewer District. Letter dated May 22, 2008. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.

7-1 REVISION 0

- MSD 2010. Metropolitan St. Louis Sewer District. Letter dated May 10, 2010. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2012. Metropolitan St. Louis Sewer District. Letter dated May 24, 2012. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2014. Metropolitan St. Louis Sewer District. Letter dated June 23, 2014. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- MSD 2016. Metropolitan St. Louis Sewer District. Letter dated July 18, 2016. From Steven M. Grace, Environmental Assistant Engineer, to Bruce Munholand, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- MSD 2018. Metropolitan St. Louis Sewer District. Letter dated June 11, 2018. From Steven M. Grace, Environmental Assistant Engineer, to Bruce Munholand, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- MSD 2020. Metropolitan St. Louis Sewer District. Letter dated July 16, 2020. From Steven M. Grace, Environmental Assistant Engineer, to Bruce Munholand, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-SPECGX 1011728100, SP809.
- NCRP 1988. National Council on Radiation Protection and Measurements. *Measurement of Radon and Radon Daughters in Air*. NCRP Report No. 97. November 1988.
- NCRP 2009. National Council on Radiation Protection and Measurements. *Ionizing Radiation Exposure of the Population of the United States*. NCRP Report No. 160. 3 March 2009.
- USACE 1997. U.S. Army Corps of Engineers, Environmental Quality. *Chemical Quality Assurance for HTRW Projects*. Engineer Manual. EM-200-1-6. October 10, 1997.
- USACE 1998a. U.S. Army Corps of Engineers. *Record of Decision for the St. Louis Downtown Site*. St. Louis, Missouri. Final. July 1998.
- USACE 1998b. U.S. Army Corps of Engineers, Engineering and Design. *Chemical Data Quality Management for Hazardous, Toxic, Radioactive Waste Remedial Activities*. Engineer Regulation. ER-1110-1-263. April 30, 1998.
- USACE 1999a. U.S. Army Corps of Engineers. *Environmental Monitoring Guide for the St. Louis Sites*. Final. December 1999.
- USACE 1999b. U.S. Army Corps of Engineers. *FUSRAP Laboratory Data Management Process* for the St. Louis Site. St. Louis, Missouri. June 1999.
- USACE 2000. U.S. Army Corps of Engineers. Sampling and Analysis Guide for the St. Louis Site. Final. October 2000.

7-2 REVISION 0

- USACE 2001. U.S. Army Corps of Engineers, Environmental Quality. *Requirements for the Preparation of Sampling and Analysis Plans*. Engineer Manual. EM 200-1-3. February 1, 2001.
- USACE 2003. U.S. Army Corps of Engineers. *Phase 1 Ground-Water Remedial Action Alternative Assessment (GRAAA) at SLDS.* St. Louis Missouri. Final. June 2003.
- USACE 2018. U.S. Army Corps of Engineers. *Laboratory Quality Assurance Plan for the FUSRAP St. Louis Radiological Laboratory*. St. Louis, Missouri. Revision 11. February 2018.
- USACE 2019. U.S. Army Corps of Engineers. *Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for Calendar Year 2020.* St. Louis, Missouri. Revision 0. December 23, 2019.
- USEPA 1987. U.S. Environmental Protection Agency. *Environmental Radon*. Volume 35. New York, 1987.
- USEPA 1989. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington D.C. *Exposure Factor Handbook*. EPA/600/8-89/043. July 1989.
- USEPA 1991. U.S. Environmental Protection Agency. *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans*. QAMS-005/80. 1991.
- USEPA 1993. U.S. Environmental Protection Agency. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. SW-846.* Third Edition. Final Update III-A. EPASW-846.3-3a. March 1993.
- USEPA 1994. U.S. Environmental Protection Agency. *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations*. EPA QA/R-5. January 1994.
- USEPA 2000. U.S. Environmental Protection Agency. *Guidance for Data Quality Assessment Practical Methods for Data Analysis*. EPA QA/G-9. QA00 Update. July 2000.
- USEPA 2020. U.S. Environmental Protection Agency. CAP88-PC Version 4.1 Computer Code, March 2020.
- 10 CFR 20, Standards for Protection Against Radiation.
- 10 CFR 20.1301, Dose Limits for Individual Members of the Public.
- 40 CFR 61, Subpart I, National Emission Standards for Radionuclide Emissions from Federal Facilities Other than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.
- 40 CFR 192, Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings.

7-3 REVISION 0

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Penort for CV 2020	
St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020	
THIS PAGE INTENTIONALLY LEFT BLANK	
7.4	

7-4 REVISION 0

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020	
THIS PAGE INTENTIONALLY LEFT BLANK	
THIS FAGE INTENTIONALLY LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	
THISTAGE INTENTIONALLT LEFT BLANK	
THISTAGE INTENTIONALLT LEFT BLANK	
THISTAGE INTENTIONALLT LEFT BLANK	
THISTAGE INTENTIONALLT LEFT BLANK	
THIST AGE INTENTIONALLT LEFT BLANK	
THIST AGE INTENTIONALLT LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	
THIST AGE INTENTIONALLY LEFT BLANK	
THIS I AGE INTENTIONALL'I LEFT BLANK	
THIS TAGE INTENTIONALLT LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	
THIS TAGE INTENTIONALLY LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	

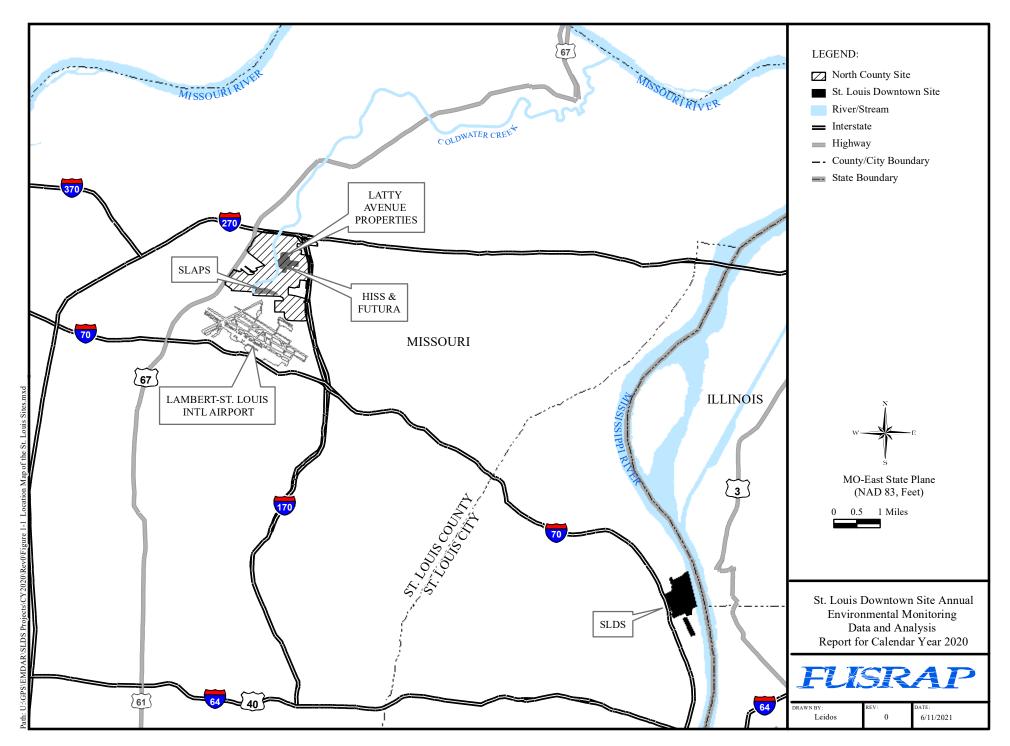


Figure 1-1. Location Map of the St. Louis Sites

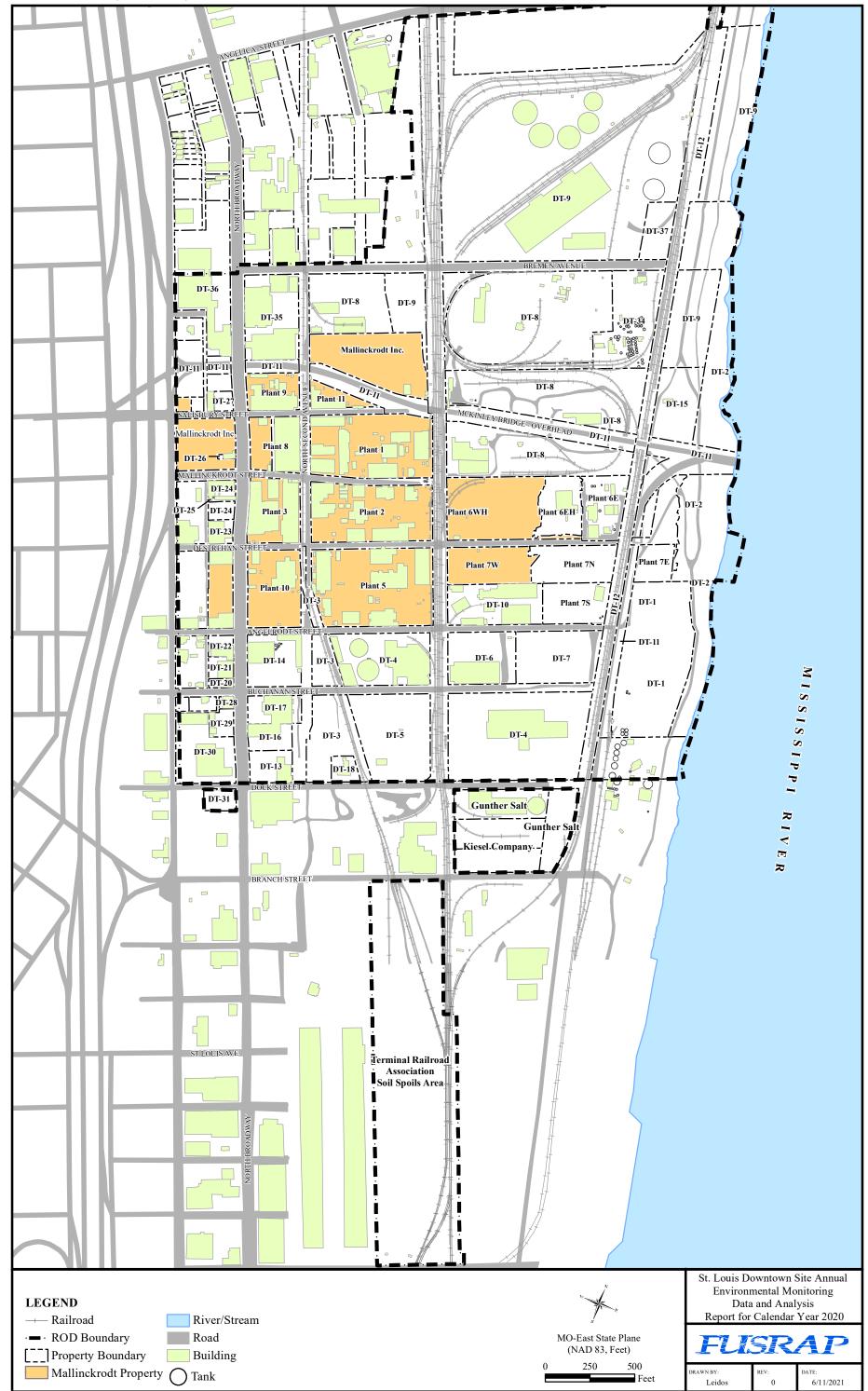


Figure 1-2. Plan View of the SLDS

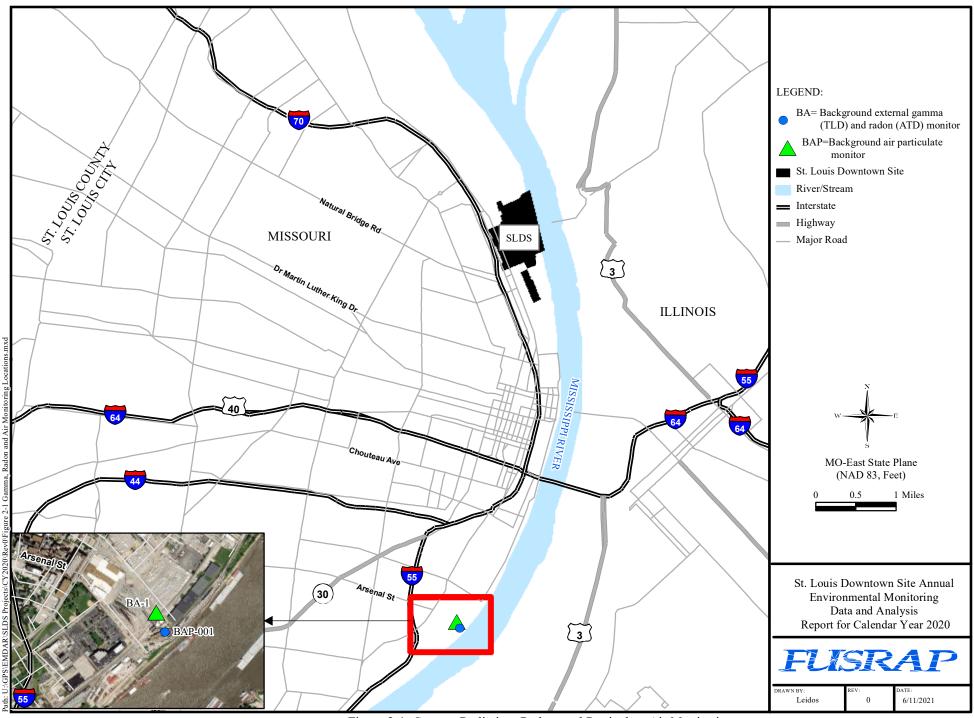


Figure 2-1. Gamma Radiation, Radon, and Particulate Air Monitoring at St. Louis Background Location - USACE Service Base

Figure 2-2. Gamma Radiation and Radon Monitoring Locations at the SLDS

Figure 3-1. MSD Excavation Water Discharge Points at the SLDS

Unit Designation	Approximate Thickness (ft)	Description
it (HU-A)	0-25	RUBBLE and FILL Grayish black (N2) to brownish black (5YR2/1). Dry to slightly moist, generally becoming moist at 5 to 6 ft and saturated at 10 to 12 ft. Slight cohesion, variable with depth, moisture content, and percentage of fines present. Consistency of relative density is unrepresentative due to large rubble fragments. Rubble is concrete, brick, glass, and coal slag. Percentage of fines as silt or clay increases with depth from 5 to 30 percent. Some weakly cemented aggregations of soil particles. Adhesion of fines to rubble increases with depth and higher moisture content. Degree of compaction is slight to moderate with frequent large voids.
Upper Hydrostratigraphic Unit (HU-A)	0-10	Silty CLAY (CH) Layers are mostly olive gray (5Y2/1), with some olive black (5Y2/1). Predominantly occurs at contact of undisturbed material, or at boundary of material with elevated activity. Abundant dark, decomposed organics. Variable percentages of silt and clay composition.
Hydrostra	0-5	CLAY (CL) Layers are light olive gray (5Y5/2), or dark greenish gray (5GY4/1). Slightly moist to moist, moderate cohesion, medium stiff consistency. Tends to have lowest moisture content. Slight to moderate plasticity.
Upper	0-2.5	Interbedded CLAY, Silty CLAY, SILT and Sandy SILT (CL, ML, SM) Dark greenish gray (5GY4/1) to light olive gray (5Y6/1). Moist to saturated, dependent on percentage of particle size. Contacts are sharp, with structure normal to sampler axis to less than 15 degrees downdip. Layer thicknesses are variable, random in alternation with no predictable vertical gradation or lateral continuity. Some very fine-grained, rounded silica sand as stringers. Silt in dark mafic/biotite flakes. Some decomposed organics.
igraphic	0-10	Sandy SILT (ML) Olive gray (5Y4/1). Moist with zones of higher sand content saturated. Slight to moderate cohesion, moderate compaction. Stiff to very stiff consistency, rapid dilatancy, nonplastic. Sand is well sorted, very fine and fine-grained rounded quartz particles.
Lower Hydrostratigraphic Unit (HU-B)	0-50	Silty SAND and SAND (SM, SP, SW) Olive gray (5Y4/1). Saturated, slight cohesion, becoming noncohesive with decrease of silt particles with depth. Dense, moderate compaction. Moderate to well-graded, mostly fine- and medium-grained, with some fine- and coarse-grained particles. Mostly rounded with coarse grains slightly subrounded. Gradual gradation from upper unit, silty sand has abundant dark mafic/biotite flakes. Sand is well-graded, fine gravel to fine sand. Mostly medium-grained, with some fine-grained and few coarse-grained and fine gravel.
Limestone Bedrock Unit (HU-C)	Total thickness not penetrated during drilling	LIMESTONE Light olive gray (5Y4/1) with interbedded chert nodules. Generally hard to very hard; difficult to scratch with knife. Slightly weathered, moderately fresh with little to no discoloration or staining. Top 5 ft is moderately fractured, with 99 percent of joints normal to the core axis. Joints are open, planar, and smooth. Some are slightly discolored with trace of hematite staining.

SOURCE: MODIFIED FROM DOE 1994.

NOTE: THE CODES IN PARENTHESES FOLLOWING THE LITHOLOGIES ARE THE UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) CODES.

THE CODES IN PARENTHESES FOLLOWING THE COLOR DESCRIPTIONS REPRESENT CHROMA, HUE, AND VALUE FROM THE MUNSELL SOIL COLOR CHARTS.

FUSRAP

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for Calendar Year 2020

 DRAWN BY:
 REV. NO./DATE:
 CAD FILE:

 C.Kaple
 0 - 05-07-2021
 NA

NOT TO SCALE

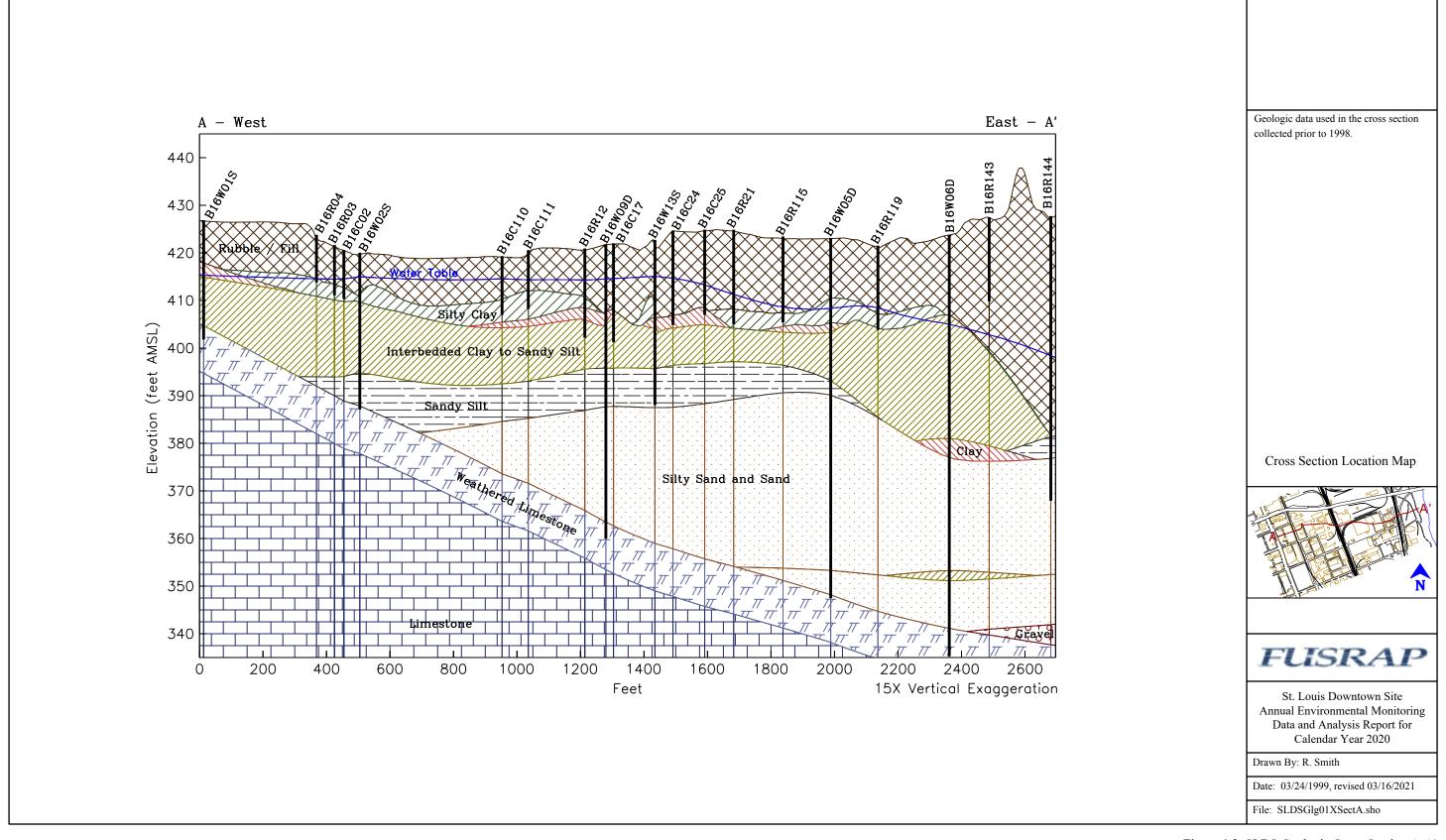


Figure 4-2. SLDS Geologic Cross-Section A-A'

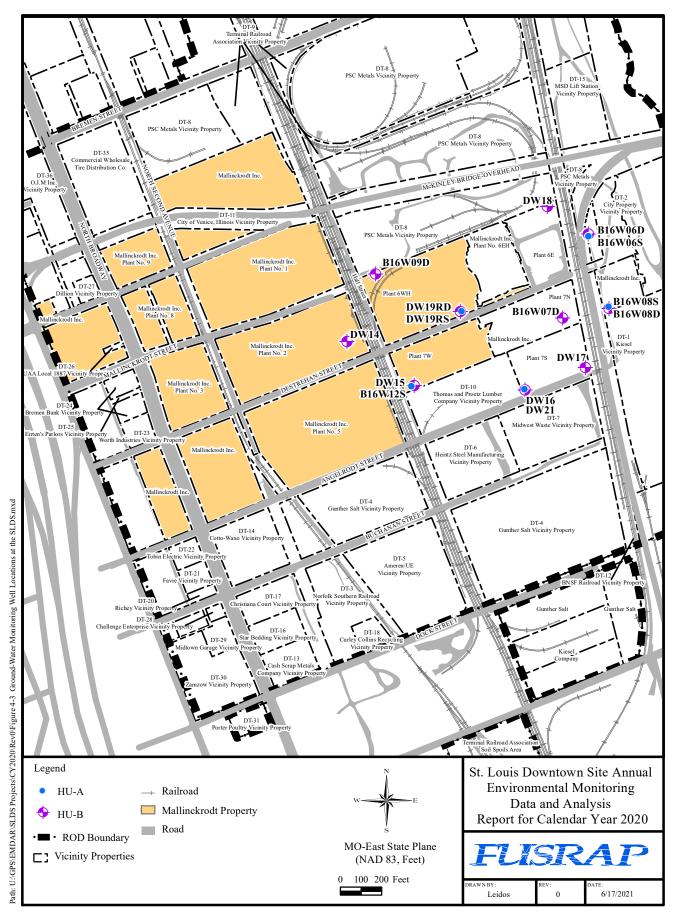


Figure 4-3. Groundwater Monitoring Well Locations at the SLDS

Figure 4-4. Arsenic Concentration
Trends in Unfiltered Groundwater at the SLDS

6/17/2021

Leidos

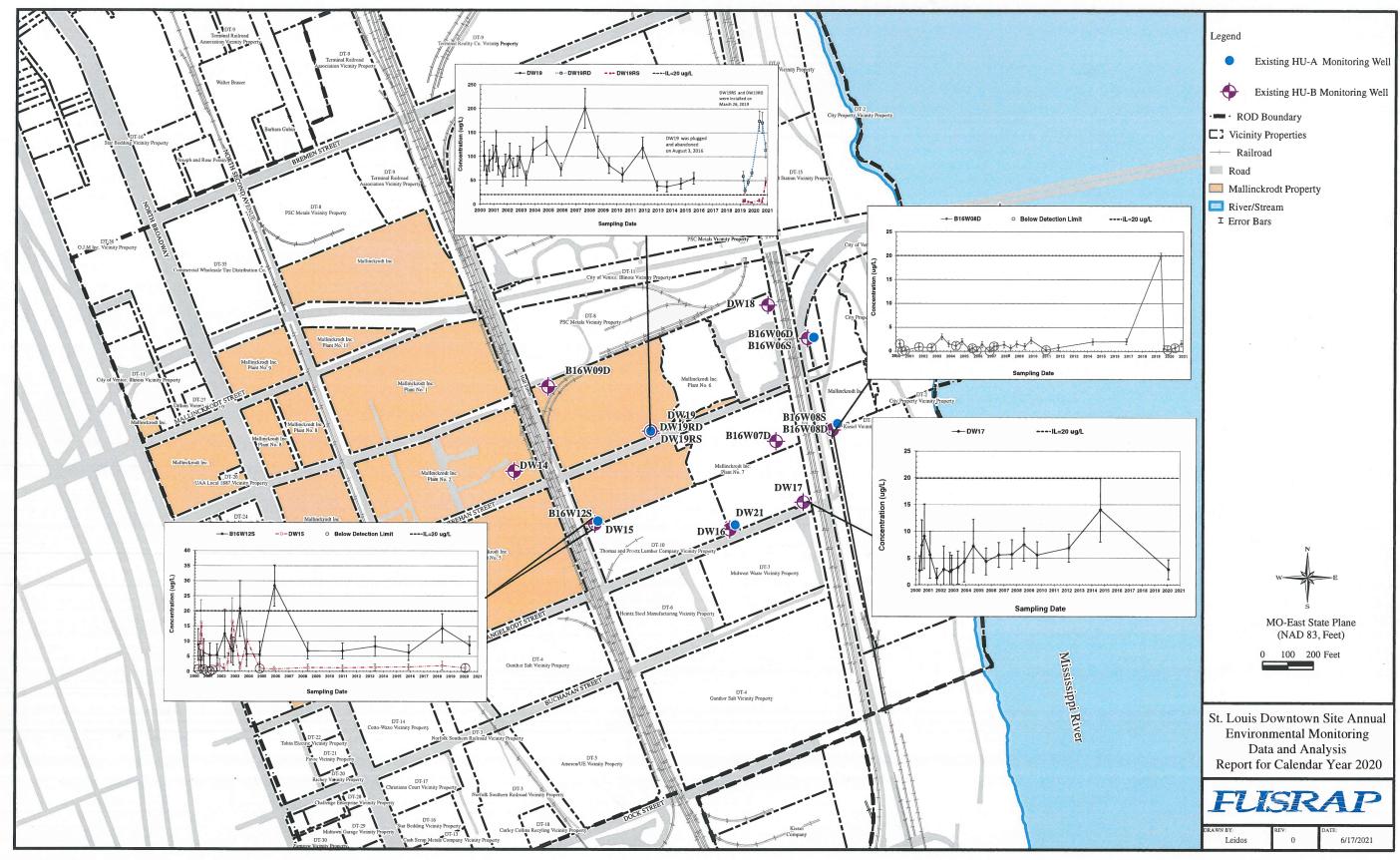
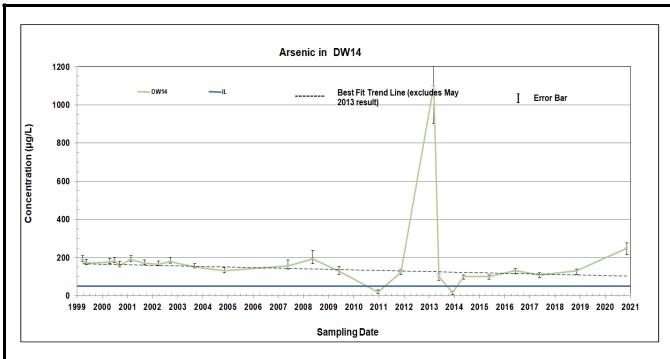
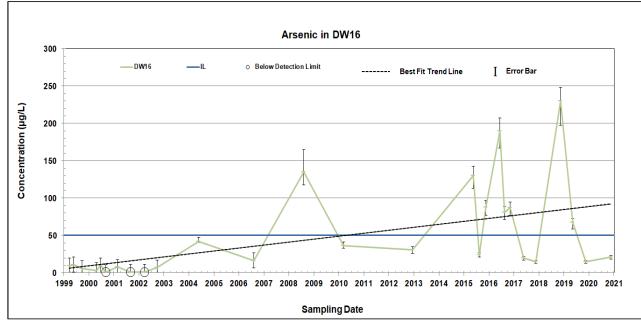
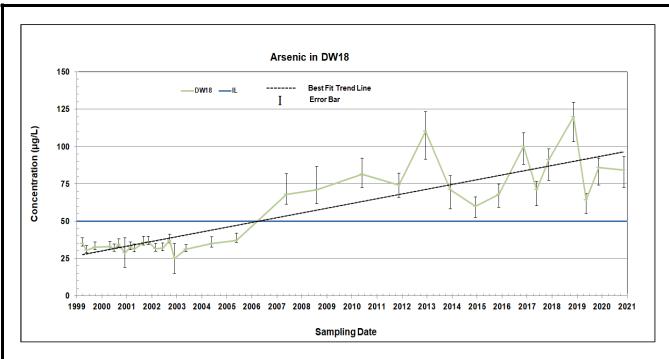




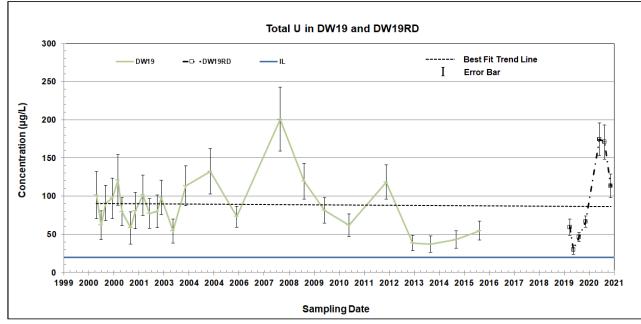
Figure 4-5. Total U Concentration Trends in Unfiltered Groundwater at the SLDS

Notes

For arsenic results less than 3 times the reporting limit (RL), the error bar represents ± RL.

For arsenic results exceeding 3 times the RL, the error bar represents the upper and lower control limits on the control spike samples. Error bars for arsenic for 2003 and earlier are based on laboratory control limits for 2003. Error bars for 2004 and later are based on laboratory control limits reported for the respective years.


For total Ú, the error bar represents ± the sum of the measurement errors for U-234, U-235, and U-238, converted to µg/L.



St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for Calendar Year 2020

REVISION: 0 DATE: 06-18-2021

Figure 4-6. Time-Versus-Concentration Plots for Arsenic and Total U in Groundwater Monitoring Wells at the SLDS

Notes

For arsenic results less than 3 times the RL, the error bar represents \pm RL.

For arsenic results exceeding 3 times the RL, the error bar represents the upper and lower control limits on the control spike samples. Error bars for arsenic for 2003 and earlier are based on laboratory control limits for 2003. Error bars for 2004 and later are based on laboratory control limits reported for the respective years.

For total U, the error bar represents ± the sum of the measurement errors for U-234, U-235, and U-238, converted to µg/L.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for Calendar Year 2020

REVISION: 0 DATE: 06-18-2021

Figure 4-6. Time-Versus-Concentration Plots for Arsenic and Total U in Groundwater Monitoring Wells at the SLDS (Continued)

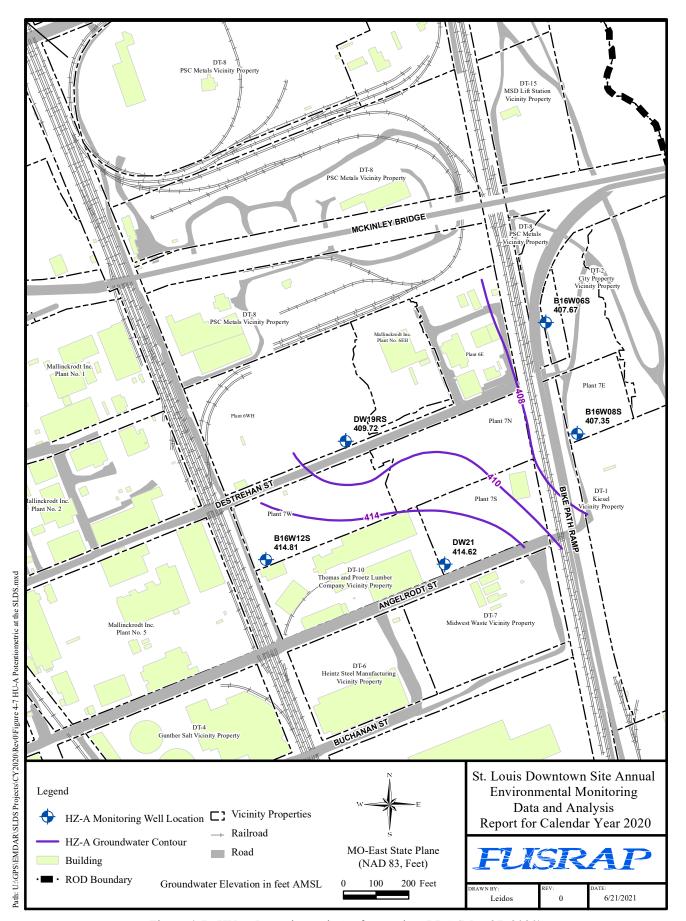


Figure 4-7. HU-A Potentiometric Surface at the SLDS (May 27, 2020)

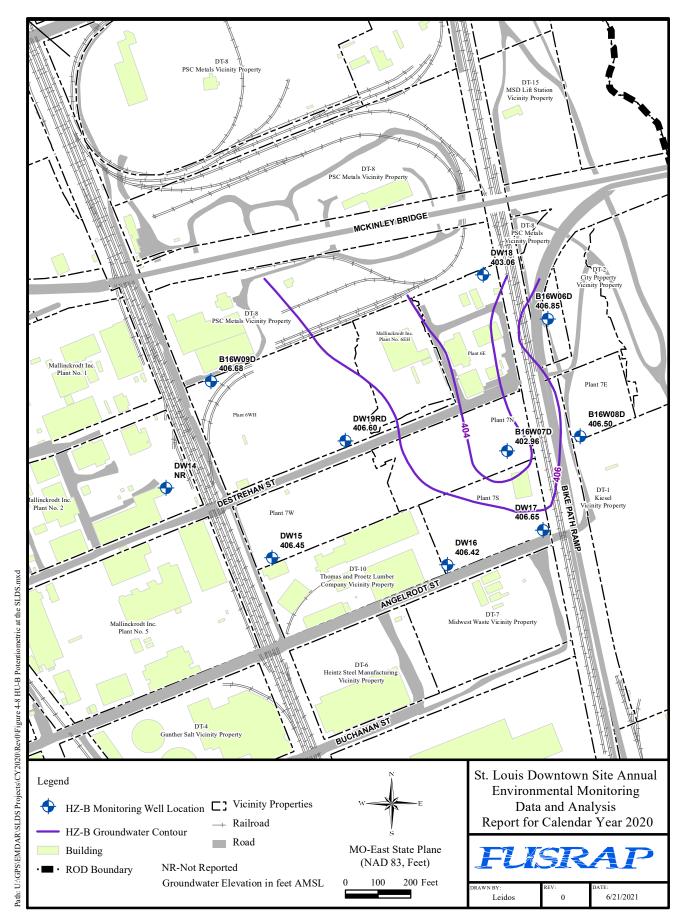


Figure 4-8. HU-B Potentiometric Surface at the SLDS (May 27, 2020)

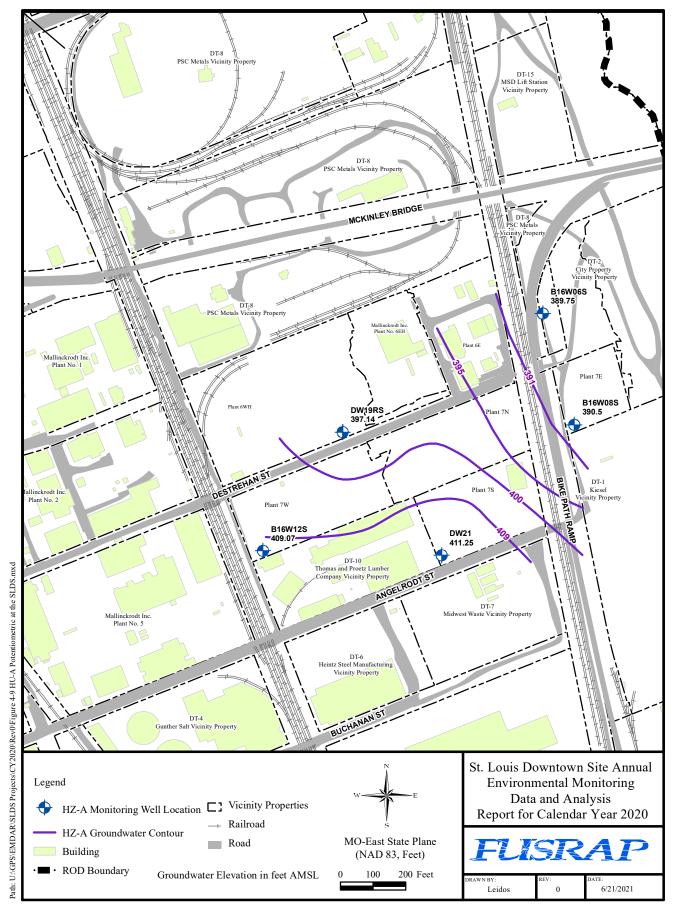


Figure 4-9. HU-A Potentiometric Surface at the SLDS (November 11, 2020)

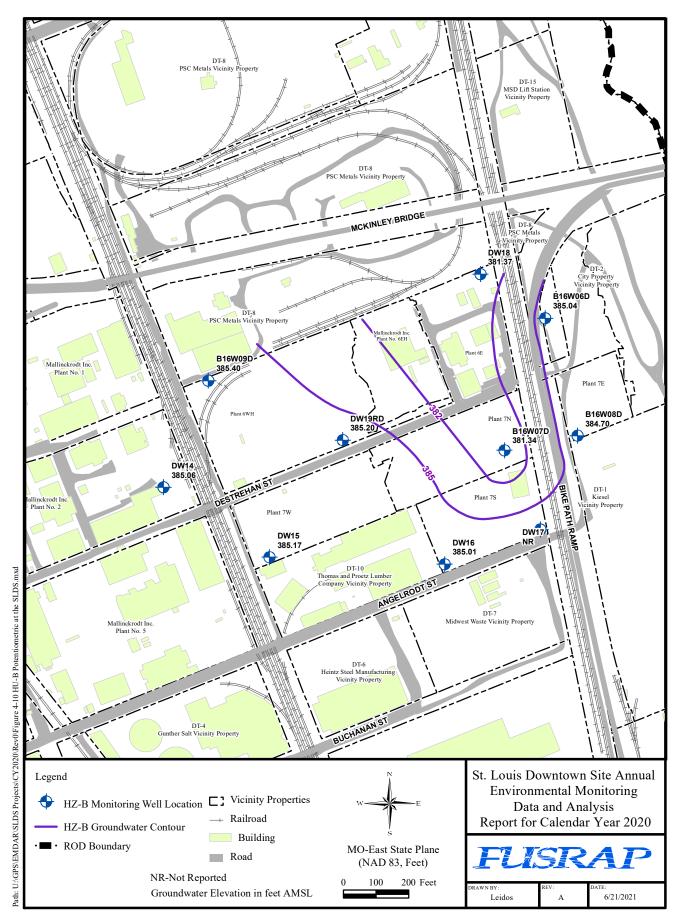


Figure 4-10. HU-B Potentiometric Surface at the SLDS (November 11, 2020)

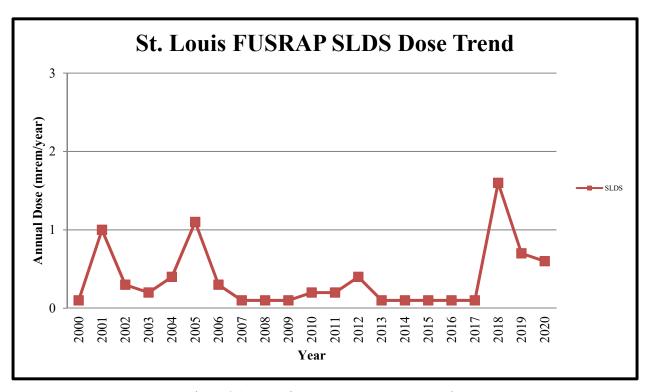


Figure 6-1. St. Louis FUSRAP SLDS Dose Trends

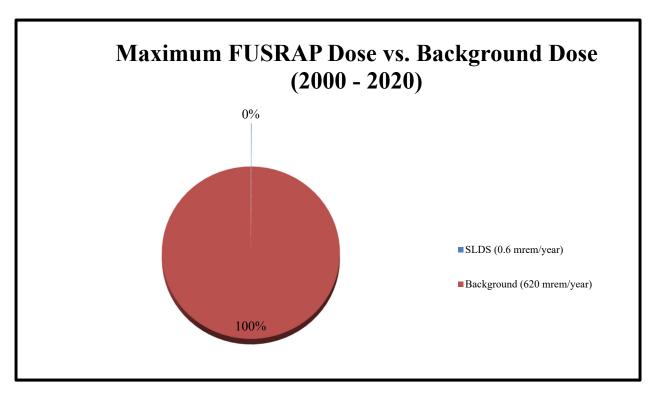


Figure 6-2. St. Louis FUSRAP SLDS Maximum Dose vs. Background Dose

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020	
APPENDIX A	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2020	

St. Louis Downtown Site Annual En	vironmental Monitoring Data and Analysis Report for	CY 2020
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THE	S PAGE INTENTIONALLY LEFT B	LANK

- CY 2019 Fourth Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory & Associated Satellite Laboratories (February).
- CY 2020 First Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory & Associated Satellite Laboratories (June).
- Pre-Design Investigation Report and Final Status Survey Evaluation Addendum for the Accessible Soil within the St. Louis Downtown Site Plant 1 Former Building 10 Area (June 18).
- St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2019 (July 6).
- Five-Year Review Report: Fourth Five-Year Review Report for Formerly Utilized Sites Remedial Action Program (FUSRAP) St. Louis Sites (August 17).
- Post-Remedial Action Report and Final Status Survey Evaluation for the Accessible Soil within the St. Louis Downtown Site Destrehan Street (East) Property (August 24).
- Mississippi River Riverbed Characterization Work Plan, FUSRAP St. Louis Downtown Site (September 2).
- Post-Remedial Action Report and Final Status Survey Evaluation for the Accessible Soil within the St. Louis Downtown Site Plant 7 West (September 17).
- CY 2020 Second Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory & Associated Satellite Laboratories (November).
- CY 2020 Third Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory & Associated Satellite Laboratories (November).
- Community Involvement Plan for the St. Louis FUSRAP Sites (December).
- Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for Calendar Year 2021 (December 22).

St. Louis Downtown Site Ann	nual Environmental Monitoring Data and Analysis Report for CY 2020	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

31. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for C 1 2020
APPENDIX B
APPENDIX B ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT SUBMITTED IN ACCORDANCE WITH REQUIREMENTS OF 40 <i>CFR</i> 61, SUBPART 1
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT
ST. LOUIS DOWNTOWN SITE 2020 RADIONUCLIDE EMISSIONS NESHAP REPORT

St. Louis Downtown Site Annual En	vironmental Monitoring Data and Analysis Report for	CY 2020
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THE	S PAGE INTENTIONALLY LEFT B	LANK

TABLE OF CONTENTS

SEC	TION	<u>P</u>	PAGE
LIST	OF T	ABLES	B-ii
LIST	of F	IGURES	B-ii
LIST	OF A	TTACHMENTS	B-ii
ACR	ONYM	IS AND ABBREVIATIONS	. B-iii
UNI	Г АВВ	REVIATIONS	. B-iv
EXE	CUTIV	VE SUMMARY AND DECLARATION STATEMENT	B-v
1.0	PUR	POSE	B-1
2.0	MET	THOD	В-3
	2.1	EMISSION RATE	B-3
	2.2	EFFECTIVE DOSE EQUIVALENT	B-3
3.0	MET	TEOROLOGICAL DATA	B-5
4.0		LOUIS DOWNTOWN SITE PROPERTIES UNDER ACTIVE MEDIATION	B-7
	4.1	SITE HISTORY	B-7
	4.2	MATERIAL HANDLING AND PROCESSING FOR CALENDAR YEAR 2020	B-7
	4.3	SOURCE DESCRIPTION – RADIONUCLIDE SOIL CONCENTRATIONS.	B-7
	4.4	LIST OF ASSUMED AIR RELEASES FOR CALENDAR YEAR 2020	B-8
	4.5	DISTANCES TO CRITICAL RECEPTORS	B-8
	4.6	EMISSIONS DETERMINATION	B-8
	4.7	CAP88-PC RESULTS	B-10
5.0	REF	ERENCES	B-11

LIST OF TABLES

<u>NUMBER</u>		PAGE
Table B-1.	St. Louis Wind Speed Frequency	B-5
Table B-2.	St. Louis Wind Rose Frequency	
Table B-3.	SLDS Critical Receptors for CY 2020	B-8
Table B-4.	SLDS Average Gross Alpha and Beta Airborne Particulate Emissions for	
	CY 2020	B-8
Table B-5.	SLDS Excavation Effective Areas and Effective Diameters for CY 2020	B-9
Table B-6.	SLDS Site Release Flow Rates for CY 2020	B-9
Table B-7.	SLDS Area Airborne Radioactive Particulate Emission Rates Based on	
	Excavation Perimeter Air Samples for CY 2020	B-10
Table B-8.	SLDS CAP88-PC Results for Critical Receptors for CY 2020	B-10

NUMBER

Figure B-1. SLDS Critical Receptors

LIST OF ATTACHMENTS

LIST OF FIGURES

Attachment B-1 Calculated Emission Rates from St. Louis Downtown Site Properties

Attachment B-2 CAP88-PC Output Report for St. Louis Downtown Site Properties

ACRONYMS AND ABBREVIATIONS

Ac actinium

AEC U.S. Atomic Energy Commission

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations

CY calendar year

DOE U.S. Department of Energy EDE effective dose equivalent

FUSRAP Formerly Utilized Sites Remedial Action Program

GIS geographic information system

Mallinckrodt LLC

MED Manhattan Engineer District NAD normalized absolute difference

NESHAP National Emission Standard for Hazardous Air Pollutants

Pa protactinium Ra radium

RA remedial action

ROD Record of Decision for the St. Louis Downtown Site

SLDS St. Louis Downtown Site

SLS St. Louis Sites
SU survey unit
Th thorium
U Uranium

USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

VP vicinity property

UNIT ABBREVIATIONS

Both English and metric units are used in this report. The units used in a specific situation are based on common unit usage or regulatory language (e.g., depths are given in feet, and areas are given in square meters). Units included in the following list are not defined at first use in this report.

°C degree(s) Celsius (centigrade)
μCi/cm³ microcurie(s) per cubic centimeter
μCi/mL microcurie(s) per milliliter

Ci curie(s) cm centimeter(s)

cm³ cubic centimeter(s)

m meter(s)

mrem

 $\begin{array}{ll} m^2 & square \ meter(s) \\ m^3 & cubic \ meter(s) \\ mL & milliliter \end{array}$

pCi/g picocuries per gram

millirem

EXECUTIVE SUMMARY AND DECLARATION STATEMENT

This report presents the results of National Emission Standard for Hazardous Air Pollutants (NESHAP) calculations for the St. Louis Formerly Utilized Sites Remedial Action Program (FUSRAP) St. Louis Downtown Site (SLDS) for calendar year (CY) 2020. NESHAP requires the calculation of the effective dose equivalent (EDE) from radionuclide emissions to critical receptors. The report follows the requirements and procedures contained in 40 Code of Federal Regulations (CFR) 61, Subpart I, National Emission Standards for Radionuclide Emissions from Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.

This NESHAP report evaluates SLDS properties where there was a reasonable potential for radionuclide emissions due to St. Louis FUSRAP activities. These sites include, Gunther Salt, Plant 6 Loadout, and Plant 7 West (henceforth referred to as Plant 7W).

Emissions from the SLDS were evaluated for the entire CY 2020 to provide a conservative estimate of total emissions.

The NESHAP standard of EDE to a critical receptor from radionuclide emissions is 10 mrem per year. The SLDS did not exceed this standard. The EDE from radionuclide emissions at the SLDS was calculated using soil characterization data, air particulate monitoring data, and the U.S. Environmental Protection Agency (USEPA) CAP88-PC modeling code, which resulted in an EDE at the SLDS of less than 0.1 mrem per year.

The evaluation for the SLDS resulted in less than 10 percent of the dose standard prescribed in 40 CFR 61.102. This site is exempt from the reporting requirements of 40 CFR 61.104(a).

DECLARATION STATEMENT – 40 CFR 61.104(a)(xvi)

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment. See 18 *U.S. Code* 1001.

Signature	Date
Office:	U.S. Army Corps of Engineers, St. Louis District Office
Address:	114 James S McDonnell Boulevard
	Hazelwood, MO 63042
Contact:	Jon Rankins

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020	
THIS PAGE INTENTIONALLY LEFT BLANK	

1.0 PURPOSE

This NESHAP report contains the EDE calculations from radionuclide emissions (exclusive of radon) to critical receptors from the SLDS properties at which a reasonable potential existed for radionuclide emissions due to St. Louis FUSRAP activities. These sites include Gunther Salt, Plant 6 Loadout, and Plant 7W. The air emissions from the SLDS are ground releases of particulate radionuclides in soil as a result of windblown action and remedial activity in the form of excavation and off-site disposal of soil.

	aal Environmental Monitoring Data and Analysis Report for CY 2020	
Т	THIS PAGE INTENTIONALLY LEFT BLANK	

2.0 METHOD

Emission rates for the SLDS were modeled using guidance documents (i.e., A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities [USEPA 1989]) referenced in 40 CFR 61, Appendix E, Compliance Procedures Methods for Determining Compliance with Subpart I, and were measured by collection of environmental air samples. Emission rates, along with appropriate meteorological data and distances to critical receptors¹, were input into the USEPA computer code CAP88-PC to obtain the EDE from the air emissions.

Although 40 *CFR* 61.103 requires the use of the USEPA computer code COMPLY, USEPA no longer supplies technical support for COMPLY. However, the USEPA lists both COMPLY and CAP88-PC as atmospheric models for assessing dose and risk from radioactive air emissions (USEPA 2020). The USEPA continues to maintain and update the CAP88-PC modeling program, and has updated it as recently as March 2020. In previous FUSRAP NESHAP reports, both COMPLY and CAP88-PC results have been compared. This comparison indicated that CAP88-PC is a comparable and conservative method of demonstrating compliance with 40 *CFR* 61, Subpart I. For these reasons, CAP88-PC was used in this NESHAP report to demonstrate compliance with the NESHAP standard.

2.1 EMISSION RATE

The method used to determine particulate radionuclide emission rates from the SLDS was 40 CFR 61, Appendix D, Methods for Estimating Radionuclide Emissions. Emissions during excavations were evaluated using air sampling data at the excavation and loadout perimeters.

2.2 EFFECTIVE DOSE EQUIVALENT

The EDE to critical receptors¹ is obtained using USEPA computer code CAP88-PC, Version 4.1 (USEPA 2020). CAP88-PC uses a Gaussian plume equation to estimate the dispersion of radionuclides and is referenced by the USEPA to demonstrate compliance with the NESHAP emissions criterion in 40 *CFR* 61. An area ground release at a height of 1.0 m is modeled for the SLDS.

The EDE is calculated by combining doses from ingestion, inhalation, air immersion, and external ground surface. CAP88-PC contains historical weather data libraries for major airports across the country, and the results can be modeled for receptors at multiple distances from the emissions source.

¹ "Critical receptors," as used in this report, are the locations for the nearest residence, farm, business, and school.

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2020	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

3.0 METEOROLOGICAL DATA

Meteorological data were obtained from the CAP88-PC code for the Lambert – St. Louis International Airport (wind file 13994.WND). Data in the file were accumulated from 1988 through 1992.

Average Annual Wind Velocity: 4.446 m per second
 Average Annual Precipitation Rate: 111 cm per year

• Average Annual Air Temperature: 14.18 °C

Wind speed frequency data were obtained from Lambert – St. Louis International Airport (see Table B-1).

Table B-1. St. Louis Wind Speed Frequency

Wind Speed Group (Knots)	Frequency (Percent)
0 - 3	10
4 – 7	29
8 - 12	36
13 - 18	21
19 – 24	3
25 – 31	1

Knot = 1.151 miles per hour

Wind direction frequency data were obtained from the CAP88-PC wind file, 13994.WND (see Table B-2).

Table B-2. St. Louis Wind Rose Frequency

Wind D	irection	Wind Frequency	Wind D	Wind Frequency	
Wind Toward	Wind From	(Percent)	Wind Toward	Wind From	(Percent)
North	South	13.1	South	North	5.6
North-Northwest	South-Southeast	7.4	South-Southeast	North-Northwest	4.3
Northwest	Southeast	6.8	Southeast	Northwest	6.1
West-Northwest	East-Southeast	6.9	East-Southeast	West-Northwest	8.7
West	East	5.5	East	West	9.0
West-Southwest	East-Northeast	2.8	East-Northeast	West-Southwest	6.8
Southwest	Northeast	3.1	Northeast	Southwest	5.4
South-Southwest	North-Northeast	3.7	North-Northeast	South-Southwest	5.0

St. Louis Downtown Site A	nnual Environmental Monitoring Data and Analysis Report for CY 2020	
	THIS PAGE INTENTIONALLY LEFT BLANK	

4.0 ST. LOUIS DOWNTOWN SITE PROPERTIES UNDER ACTIVE REMEDIATION

4.1 SITE HISTORY

From 1942 until 1957, Mallinckrodt LLC (Mallinckrodt) was contracted by the Manhattan Engineer District (MED) and the U.S. Atomic Energy Commission (AEC) to process uranium ore for the production of uranium metal. Residuals of the process, including spent pitchblende ore, and radium, thorium, uranium, and their radioactive decay products, were inadvertently released from the Mallinckrodt property into the environment. Residuals from the uranium process had elevated levels of radioactive radium, thorium, and uranium. From 1942 to 1945, Plants 1, 2, 6, 7, and 4 (now Plant 10) were involved in the development of uranium-processing techniques, uranium compounds and metal production, and uranium metal recovery from residues and scrap. Mallinckrodt decontaminated Plants 1 and 2 from 1948 through 1950 to meet the AEC criteria then in effect, and the AEC released these plants for use without radiological restrictions in 1951. MED/AEC operations ended in 1957.

A radiological survey conducted at the SLDS in 1977 found radiological contamination that exceeded existing guidelines. In response to this survey, it was determined that further investigation of the site was necessary to characterize the nature and extent of the contamination. In 1990, the USEPA Region 7 and the U.S. Department of Energy (DOE) established schedules and deliverables for the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process at the St. Louis Sites (SLS). In 1994, the DOE submitted the *Remedial Investigation Report for the St. Louis Site* (DOE 1994). The FUSRAP was transferred from the DOE to the U.S. Army Corps of Engineers (USACE) on October 13, 1997.

The *Record of Decision for the St. Louis Downtown Site* (ROD) was issued in October 1998 (USACE 1998). The USACE began remediation in October 1998, and characterization, pre-design investigation, and excavation activities have continued on Mallinckrodt and SLDS vicinity properties (VPs) through 2020.

4.2 MATERIAL HANDLING AND PROCESSING FOR CALENDAR YEAR 2020

Excavation activities were performed at the SLDS areas of Gunther Salt (DT-4) and Plant 7W. Additionally, loadout activities were performed at Plant 6. Excavated soils placed in the loadout area are tamped down at the end of each night or sprayed with a surfactant over longer periods of time. The excavated soils were removed from the site by rail. General area air samples were collected around excavation and loadout perimeters during CY 2020, with the results used to determine the air emissions. In situ emissions from inactive areas of the SLDS were not calculated because the ground surface soil at the SLDS is generally covered with asphalt or concrete that limits the potential for material to become airborne.

4.3 SOURCE DESCRIPTION – RADIONUCLIDE SOIL CONCENTRATIONS

For the SLDS excavation areas, the activity fraction for each radionuclide was determined based upon excavated area property-specific average soil radionuclide concentrations as determined from railcar data used to characterize the waste for shipment. Attachment B-1 contains Table B-1-1, a summary table of the radionuclide concentrations for each area or plant and VPs. The averaged total

alpha and total beta air particulate concentrations at each SLDS property and the activity fraction for each corresponding property were used to calculate the emission rate for each area.

4.4 LIST OF ASSUMED AIR RELEASES FOR CALENDAR YEAR 2020

Wind erosion during periods of remedial action (RA) excavations and periods in which the loadout pile was uncovered is assumed for the particulate radionuclide emission determinations from the SLDS. Unexcavated plants and VPs do not contribute to the emission determinations for periods of inactivity due to the low activity and cover.

4.5 DISTANCES TO CRITICAL RECEPTORS

The distances to critical receptors are shown on Figure B-1 and listed in Table B-3. Distances and directions to critical receptors are determined by using tools in a geographic information system (GIS).

Nearest Re		est Residence Farm		Business		School		
Sources	Distance (m)	Direction	Distance (m)	Direction	Distance (m)	Direction	Distance (m)	Direction
Plant 7W	453	Southwest	5,722	East	83	South-Southeast	791	West
Gunther Salt	222	West	5,896	East	302	Northeast	777	Northwest
Plant 6 Loadout	495	Southwest	5,730	East	156	South-Southeast	760	West

Table B-3. SLDS Critical Receptors for CY 2020

4.6 EMISSIONS DETERMINATION

4.6.1 Measured Airborne Radioactive Particulate Emissions

Particulate air samples were collected from several locations at prominent wind directions from around the perimeter of the SLDS excavations and loadout area to measure the radionuclide emissions from remedial activities. The sample locations were established at the start of each remedial activity and provide the basis for determining the radionuclide emission rates during CY 2020. The average gross alpha and beta concentrations (in μ Ci/mL) are determined for each area or plant location for CY 2020. The area or plant average concentrations are presented in Table B-4.

Table B-4. SLDS Average Gross Alpha and Beta Airborne Particulate Emissions
for CY 2020

Manitaring Lagation	Average Concentration (μCi/mL) ^a				
Monitoring Location	Gross Alpha	Gross Beta			
Plant 7W	1.53E-15	7.25E-15			
Gunther Salt (DT-4)	5.14E-15	2.84E-14			
Plant 6 Loadout	4.85E-15	2.96E-14			
Background Concentrations ^b	3.57E-15	1.88E-14			

^a Average concentration values for the sampling period by location.

The activity fractions for all radionuclides at each SLDS property were determined as discussed in Section 4.3 of this NESHAP report. The product of the radionuclide activity fraction and the gross concentration for each property provides the radionuclide emission concentration (in μ Ci/cm³) for

These concentrations are provided for informational purposes only. However, as a conservative approach, they were not subtracted from the gross average concentration during the determination of the EDE.

that area. The gross average concentration (μ Ci/cm³) is converted to a release (emission) rate, measured in Ci per year using Equations 1 and 2 from A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities (USEPA 1989). Equation 1 is used to determine the effective diameter of a non-circular stack or vent.

$$D = (1.3 \text{ A})^{1/2}$$
 Equation 1

where:

D = effective diameter of the release in m

A = area of the stack, vent, or release point (in m^2)

Table B-5 provides the effective surface area available for release of airborne radionuclides normalized to one year and the effective diameter for each area or plant of the SLDS where excavation or loadout was conducted in CY 2020. Calculation of the effective surface area is contained in Attachment B-1.

Table B-5. SLDS Excavation Effective Areas and Effective Diameters for CY 2020

SLDS Location	Effective Area (m ²)	Effective Diameter (m)
Plant 7W	2.5	2
Gunther Salt	447	24
Plant 6 Loadout	461	24

The average annual wind speed for the Lambert – St. Louis International Airport is provided in CAP88-PC as 4.446 m per second. Conversion of this wind speed to a flow rate through stacks with the listed effective diameters for each area is completed using Equation 2.

$$F = V \pi (D)^2 / 4$$
 Equation 2

where:

V = wind velocity (in m per minute) = 266.76 m per minute

F = flow rate (in m³ per minute)

 π = mathematical constant

D = effective diameter of the release (in m) determined using Equation 1

Converting the velocity of emissions from the sites to an effective flow rate, results in the following site release flow rates for the SLDS areas, as listed in Table B-6. The product of the flow rate, the activity fraction associated with each radionuclide, and the appropriate conversion factors provide the site emission rate for each radionuclide, as listed in Table B-7. Flow rate and average radionuclide concentration data are contained in Attachment B-1.

Table B-6. SLDS Site Release Flow Rates for CY 2020

SLDS Location	Site Release Flow Rate (m³/minute)
Plant 7W	6.7E+02
Gunther Salt	1.2E+05
Plant 6 Loadout	1.3E+05

4.6.2 St. Louis Downtown Site Total Airborne Radioactive Particulate Emission Rates

The CY 2020 emission rates for each excavated SLDS area are presented in Table B-7 and are based on the air samples collected from the perimeter of the excavated areas.

Table B-7. SLDS Area Airborne Radioactive Particulate Emission Rates Based on Excavation Perimeter Air Samples for CY 2020

Dadiamalida	Emission (Ci/year) ^a				
Radionuclide	Plant 7W	Gunther Salt	Plant 6 Loadout		
Uranium (U)-238	1.3E-07	1.2E-04	1.1E-04		
U-235	0.0E+00	7.3E-06	7.0E-06		
U-234	1.3E-07	1.2E-04	1.1E-04		
Radium (Ra)-226	8.7E-08	3.5E-05	3.5E-05		
Thorium (Th)-232	3.3E-09	4.6E-06	4.6E-06		
Th-230	1.3E-07	2.4E-05	2.4E-05		
Th-228	2.5E-08	4.6E-06	4.6E-06		
Ra-224	2.5E-08	4.6E-06	4.6E-06		
Th-234	1.1E-06	8.5E-04	9.1E-04		
Protactinium (Pa)-234m	1.1E-06	8.5E-04	9.1E-04		
Th-231	0.0E+00	5.3E-05	5.6E-05		
Ra-228	2.0E-07	3.4E-05	3.7E-05		
Actinium (Ac)-228	2.0E-07	3.4E-05	3.7E-05		
Pa-231	0.0E+00	7.3E-06	7.0E-06		
Ac-227	0.0E+00	7.3E-06	7.0E-06		

Release rate based on 365-day period at a respective flow rate (as presented in Table B-6) as determined from the average annual wind speed (4.446 m per second) and the effective site area (as presented in Table B-5) for each location.

4.7 CAP88-PC RESULTS

The CAP88-PC report is contained in Attachment B-2. The effective area factor input was taken from Table B-5. This evaluation demonstrates that all SLDS critical receptors receive less than 10 percent of the dose standard prescribed in 40 *CFR* 61.102; therefore, the SLDS is exempt from the reporting requirements of 40 *CFR* 61.104(a). The results are summarized in Table B-8.

Table B-8. SLDS CAP88-PC Results for Critical Receptors for CY 2020

	Dose (mrem/year)						
Source	Nearest Residence ^a	Farm ^a	Business ^b	School ^b			
Plant 7W	< 0.1	< 0.1	< 0.1	< 0.1			
Gunther Salt	< 0.1	< 0.1	< 0.1	<0.1			
Plant 6 Loadout	<0.1	<0.1	<0.1	<0.1			
SLDS Total Dose ^c	< 0.1	< 0.1	< 0.1	< 0.1			

a 100 percent occupancy factor.

b Corrected for the 23 percent occupancy factor (40 hours per week for 50 weeks per year).

c Combined dose from all sources at the SLDS.

5.0 REFERENCES

- DOE 1994. U.S. Department of Energy. *Remedial Investigation Report for the St. Louis Site.* St. Louis, Missouri. DOE/OR/21949-280. January 1999.
- USACE 1998. U.S. Army Corps of Engineers. *Record of Decision for the St. Louis Downtown Site*. St. Louis, Missouri. Final. July 1998.
- USEPA 1989. U.S. Environmental Protection Agency, Office of Radiation Programs, Washington, D.C. A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities. EPA 520/1-89-002. October 1989.
- USEPA 2020. U.S. Environmental Protection Agency. CAP88-PC Version 4.1 Computer Code, March 2020.
- 18 U.S. Code 1001. U.S. Code, Title 18, Crimes and Criminal Procedure; Part I, Crimes; Chapter 47, Fraud and False Statements; Section 1001, Statements or entries generally.
- 40 CFR 61, Subpart I. National Emission Standards for Radionuclide Emissions from Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.
- 40 CFR 61, Appendix D. Methods for Estimating Radionuclide Emissions.
- 40 CFR 61, Appendix E. Compliance Procedures Methods for Determining Compliance with Subpart I.

St. Louis Downtown Site Ann	nual Environmental Monitoring Data and Analysis Report for CY 2020	
	THE DACE INTENTIONALLY LEET DIANIZ	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

APPENDIX B

FIGURE

THIS PAGE INTENTIONALLY LEFT BLANK

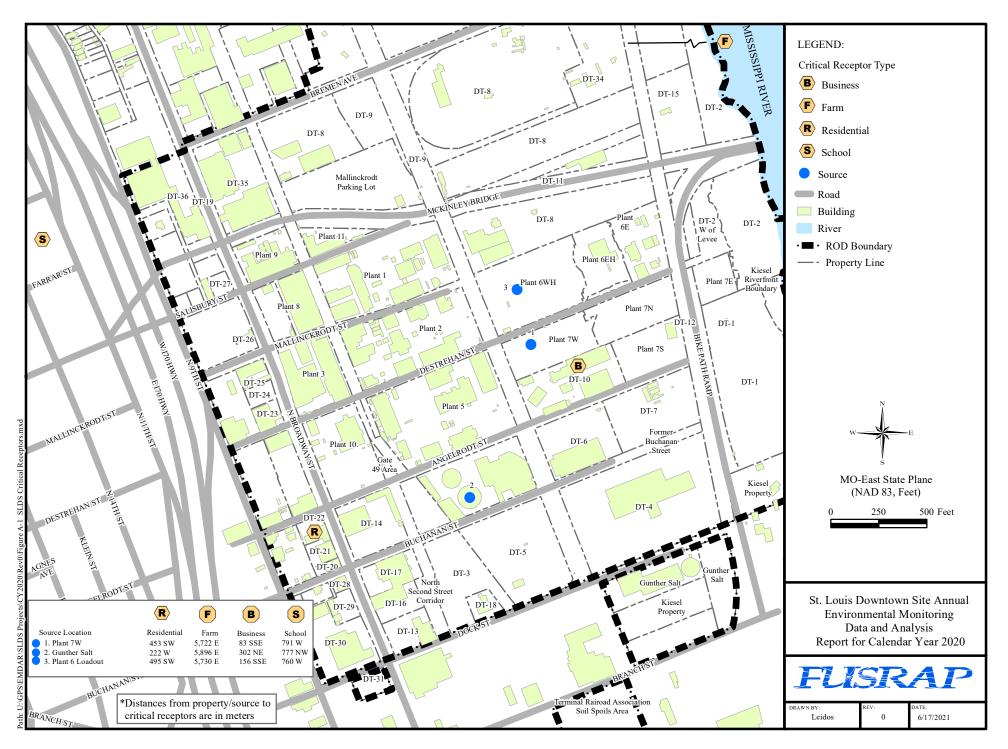


Figure B-1. SLDS Critical Receptors

ATTACHMENT B-1

CALCULATED EMISSION RATES FROM ST. LOUIS DOWNTOWN SITE PROPERTIES

THIS PAGE INTENTIONALLY LEFT BLANK

Table B-1-1. SLDS Excavation/Loadout Area Soil Radionuclide Concentrations for CY 2020a

Property	Plant 7W	Plant 7W Gunther Salt	
Radionuclide	Av	erage Concentration (pC	Ci/g) ^a
U-238	3.3	11.1	11.0
U-235	0.0	0.7	0.7
U-234	3.3	11.1	11.0
Ra-226	2.2	3.4	3.3
Th-232	0.1	0.4	0.4
Th-230	3.2	2.3	2.3
Th-228	0.6	0.4	0.4
Ra-224	0.6	0.4	0.4
Th-234	3.3	11.1	11.0
Pa-234m	3.3	11.1	11.0
Th-231	0.0	0.7	0.7
Ra-228	0.6	0.4	0.4
Ac-228	0.6	0.4	0.4
Pa-231	0.0	0.7	0.7
Ac-227	0.0	0.7	0.7

Average concentration from the SLDS CY 2020 excavated property and loadout area. When data were not available, the radionuclide was assumed to be in secular equilibrium with parent radionuclide.

Table B-1-2. SLDS Average Gross Alpha and Beta Airborne Particulate Concentrations for CY 2020

Monitoring Location	Average Concentration (µCi/mL) for Location ^a			
Withintornig Location	Gross Alpha	Gross Beta		
Plant 7W	1.53E-15	7.25E-15		
Gunther Salt	5.14E-15	2.84E-14		
Plant 6 Loadout	4.85E-15	2.96E-14		
Background Concentration ^b	3.57E-15	1.88E-14		

^a Average concentration values for the sampling period by location.

Table B-1-3. SLDS Excavation Data for CY 2020

Excavation Location Name	Surface Area (m²)	Start Date ^a	Backfill Date ^a
Gunther Salt Survey Unit (SU)-4J through SU-4P	102	01/01/20	01/02/20
Gunther Salt SU-5A through SU-5MM	764	01/01/20	02/18/20
Gunther Salt SU-5E, SU-5FF, and SU-5LL through SU-5NN	477	01/20/20	03/19/20
Gunther Salt SU-5OO through SU-5EEE	54	04/06/20	06/11/20
Gunther Salt SU-4Q through SU-4Y and SU-4DD through SU-4LL	150	06/17/20	08/31/20
Gunther Salt SU-4AA through SU-4CC and SU-4Z	41	07/27/20	08/05/20
Gunther Salt SU-4MM through SU-4TT	939	09/03/20	11/25/20
Gunther Salt SU-6A through SU-6I	89	12/03/20	12/31/20
Plant 7W Area 1 SU-8A through SU-8C	90	05/11/20	05/20/20
Plant 6 Loadout ^b	2,000	01/01/20	12/31/20

^a Open/close dates set to start or stop at the CY boundary.

These concentrations are provided for informational purposes only. However, as a conservative approach, they were not subtracted from the gross average concentration during the determination of EDE.

Loadout area was only open during working hours (23 percent of the year or 2,000 hours).

Table B-1-4. SLDS Average Surface Area and Flow Rate Per Location at the SLDS for CY 2020

Location	Total Days	Surface Area × Total Days	Average Surface Area/Year (A) ^a (m ²)		Flow Rate $F = V \pi [(D)^2 / 4]*60$ $(m^3/minute)$
Gunther Salt					
Gunther Salt SU-4J through SU-4P	2	204			
Gunther Salt SU-5A through SU-5MM	49	37,436			
Gunther Salt SU-5E, SU-5FF, and					
SU-5LL through SU-5NN	60	28,640			
Gunther Salt SU-500 through					
SU-5EEE	67	3,598			
Gunther Salt SU-4Q through SU-4Y and					
SU-4DD through SU-4LL	76	11,403			
Gunther Salt SU-4AA through SU-4CC					
and SU-4Z	10	406			
Gunther Salt SU-4MM through SU-4TT	84	78,874			
Gunther Salt SU-6A through SU-6I	29	2,576			
	Total	163,136	447	24	1.2E+05
Plant 7W					
Plant 7W Area 1 SU-8A through SU-8C	10	900			
	Total	900	2.5	2	6.7E+02
Plant 6 Loadout					
Plant 6 Loadout	366	168,360			
3 A	Total)	461	24	1.3E+05 ^b

^a Average surface area/year = $[\Sigma(\text{surface area x total days})]/365$.

Table B-1-5. SLDS Airborne Radioactive Particulate Emissions Based on Excavation Perimeter Air Samples for CY 2020

Property	Plant 7W			perty Plant 7W Gunther Salt		t	Plant 6 Loadout		
Radionuclide	Activity Fraction ^a	Emission Conc. (μCi/cm³) ^b	Release Rate (Ci/year) ^c	Activity Fraction ^a	Emission Conc. (μCi/cm³) ^b	Release Rate (Ci/year) ^c	Activity Fraction ^a	Emission Conc. (μCi/cm³) ^b	Release Rate (Ci/year) ^c
U-238	0.25	3.8E-16	1.3E-07	0.36	1.8E-15	1.2E-04	0.35	1.7E-15	1.1E-04
U-235	0.00	0.0E+00	0.0E+00	0.02	1.1E-16	7.3E-06	0.02	1.1E-16	7.0E-06
U-234 ^d	0.25	3.8E-16	1.3E-07	0.36	1.8E-15	1.2E-04	0.35	1.7E-15	1.1E-04
Ra-226	0.16	2.5E-16	8.7E-08	0.11	5.5E-16	3.5E-05	0.11	5.2E-16	3.5E-05
Th-232	0.01	9.2E-18	3.3E-09	0.01	7.2E-17	4.6E-06	0.01	6.9E-17	4.6E-06
Th-230	0.24	3.7E-16	1.3E-07	0.07	3.7E-16	2.4E-05	0.07	3.6E-16	2.4E-05
Th-228	0.05	7.0E-17	2.5E-08	0.01	7.2E-17	4.6E-06	0.01	6.9E-17	4.6E-06
Ra-224 ^d	0.05	7.0E-17	2.5E-08	0.01	7.2E-17	4.6E-06	0.01	6.9E-17	4.6E-06
Th-234	0.42	3.1E-15	1.1E-06	0.47	1.3E-14	8.5E-04	0.47	1.4E-14	9.1E-04
Pa-234m ^d	0.42	3.1E-15	1.1E-06	0.47	1.3E-14	8.5E-04	0.47	1.4E-14	9.1E-04
Th-231 ^d	0.00	0.0E+00	0.0E+00	0.03	8.3E-16	5.3E-05	0.03	8.5E-16	5.6E-05
Ra-228	0.08	5.6E-16	2.0E-07	0.02	5.2E-16	3.4E-05	0.02	5.6E-16	3.7E-05
Ac-228 ^d	0.08	5.6E-16	2.0E-07	0.02	5.2E-16	3.4E-05	0.02	5.6E-16	3.7E-05
Pa-231 ^d	0.00	0.0E+00	0.0E+00	0.02	1.1E-16	7.3E-06	0.02	1.1E-16	7.0E-06
Ac-227 ^d	0.00	0.0E+00	0.0E+00	0.02	1.1E-16	7.3E-06	0.02	1.1E-16	7.0E-06

^a Derived from the average soil radionuclide concentrations for the SLDS, as presented in Table B-1-1.

This value has been multiplied by a factor of 0.23 to account for the loadout pile being uncovered for 2,000 hours per year.

Emission concentration is equal to the activity fraction times the gross alpha or gross beta airborne particulate concentrations listed in Table B-1-2.

Release rate based on 365-day period at measured flow rate (Table B-1-4) for each site, as determined from the average annual wind speed (4.446 m per second) and calculated site area (Table B-1-4). (Note: 1 mL = 1 cm³).

When data were not available, the radionuclide was assumed to be in secular equilibrium with parent radionuclide. Conc. – concentration

ATTACHMENT B-2

CAP88-PC OUTPUT REPORT FOR ST. LOUIS DOWNTOWN SITE PROPERTIES

THIS PAGE INTENTIONALLY LEFT BLANK

CAP88 OUTPUT RESULTS

PLANT 7W

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Wed Mar 17 12:18:25 2021

Facility: Plant 7W

Address:

City: St. Louis State: MO Zip: 63147

Source Category: Area Source Type: Area Emission Year: 2020 DOSE Age Group: Adult

Comments: Air

Dataset Name: Plant 7W.

Dataset Date: Mar 17, 2021 12:18 PM
 Wind File: C:\Users\finkenbinec\Documents\CAP88\Wind Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
Adrenals	2.67E-04
UB_Wall	2.96E-04
Bone_Sur	1.10E-02
Brain	2.82E-04
Breasts	3.08E-04
St_Wall	2.85E-04
SI_Wall	2.83E-04
ULI_Wall	2.94E-04
LLI_Wall	3.17E-04
Kidneys	5.08E-04
Liver	5.22E-04
Muscle	3.18E-04
Ovaries	3.38E-04
Pancreas	2.70E-04
R_Marrow	8.73E-04
Skin	3.38E-03
Spleen	2.88E-04
Testes	3.81E-04
Thymus	2.83E-04
Thyroid	2.95E-04
GB_Wall	2.72E-04
Ht_Wall	2.82E-04
Uterus	2.80E-04
ET_Reg	1.58E-03
Lung	4.43E-03
Effectiv	1.03E-03

PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY

Pathway	Selected Individual (mrem)
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	6.28E-05 6.67E-04 9.77E-09 2.99E-04 7.30E-04 2.99E-04
TOTAL	1.03E-03

SUMMARY Page 2

NUCLIDE EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
U-238	4.89E-05
Th-234	2.88E-06
Pa-234m	1.82E-05
Pa-234	3.59E-07
U-234	5.91E-05
Th-230	2.86E-04
Ra-226	5.21E-05
Rn-222	4.02E-08
Po-218	7.18E-13
Pb-214	2.62E-05
At-218	2.70E-12
Bi-214	1.53E-04
Rn-218	1.56E-14
Po-214	8.49E-09
T1-210	5.98E-08
Pb-210	1.29E-07
Bi-210	2.09E-06
Hg-206	1.68E-13
Po-210	5.40E-10
T1-206	4.87E-12
U-235	5.88E-13
Th-231	1.88E-14
Pa-231	1.51E-11
Ac-227	1.14E-11
Th-227	1.37E-13
Fr-223	1.29E-15
Ra-223	1.54E-13
Rn-219	6.65E-14
At-219	0.00E+00
Bi-215	2.99E-19
Po-215	2.03E-16
Pb-211	1.31E-13
Bi-211	5.38E-14
T1-207	6.76E-14
Po-211	2.59E-17
Th-232	1.34E-05
Ra-228	1.23E-04
Ac-228	3.72E-05
Th-228	1.37E-04
Ra-224	9.18E-06
Rn-220	2.62E-08
Po-216	6.31E-10
Pb-212	5.74E-06
Bi-212	6.70E-06
Po-212	0.00E+00 4.63E-05
T1-208	4.63E-U5
TOTAL	1.03E-03

SUMMARY Page 3

CANCER RISK SUMMARY

Cancer	Selected Individual Total Lifetime Fatal Cancer Risk
Esophagu Stomach Colon Liver LUNG Bone Skin Breast Ovary Bladder Kidneys Thyroid Leukemia Residual Total	3.00E-12 1.16E-11 3.23E-11 8.67E-12 5.18E-10 1.11E-11 3.38E-12 1.41E-11 4.67E-12 7.21E-12 2.73E-12 9.32E-13 1.77E-11 4.37E-11 6.79E-10
TOTAL	6.79E-10

PATHWAY RISK SUMMARY

	Selected Individual Total Lifetime
Pathway	Fatal Cancer Risk
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	2.26E-11 5.06E-10 5.06E-15 1.51E-10 5.29E-10 1.51E-10
TOTAL	6.79E-10

SUMMARY Page 4

NUCLIDE RISK SUMMARY

Nuclide	Selected Individual Total Lifetime Fatal Cancer Risk
U-238	5.11E-11
Th-234	2.45E-12
Pa-234m	3.19E-12
Pa-234	1.95E-13
U-234	6.24E-11
Th-230	1.54E-10
Ra-226	4.66E-11
Rn-222	2.19E-14
Po-218	3.21E-19
Pb-214	1.40E-11
At-218	3.32E-19
Bi-214	8.10E-11
Rn-218	8.55E-21
Po-214	4.66E-15
Tl-210	3.20E-14
Pb-210	5.78E-14
Bi-210	2.31E-13
Hg-206	7.46E-20
Po-210	2.96E-16
T1-206	5.47E-19
U-235	5.24E-19
Th-231	8.61E-21
Pa-231	1.48E-18
Ac-227	3.15E-18
Th-227	7.44E-20
Fr-223	4.82E-22
Ra-223	8.29E-20
Rn-219	3.64E-20
At-219	0.00E+00
Bi-215	1.33E-25
Po-215	1.11E-22
Pb-211	4.67E-20
Bi-211	2.94E-20
T1-207	8.69E-21
Po-211	1.42E-23
Th-232	5.95E-12
Ra-228	5.72E-11
Ac-228	1.99E-11
Th-228	1.39E-10
Ra-224	1.07E-11
Rn-220	1.43E-14
Po-216	3.47E-16
Pb-212	3.12E-12
Bi-212	2.58E-12
Po-212	0.00E+00
T1-208	2.52E-11
TOTAL	6.79E-10

SUMMARY Page 5

INDIVIDUAL EFFECTIVE DOSE EQUIVALENT (mrem) (All Radionuclides and Pathways)

			Dist	ance (m)		
Direction	n 83	453	791	5722		
N	1.0E-03	9.0E-05		4.4E-05		
NNW	5.5E-04	6.7E-05	5.2E-05			
NW	6.4E-04	7.1E-05	5.4E-05			
WNW	7.7E-04	7.8E-05	5.6E-05	4.4E-05		
W	5.9E-04	6.9E-05	5.3E-05	4.4E-05	School	
WSW	3.1E-04	5.6E-05	4.8E-05	4.4E-05		
SW	4.2E-04	6.1E-05	5.0E-05	4.4E-05	Residence	
SSW	5.0E-04	6.5E-05	5.1E-05	4.4E-05		
S	4.5E-04	6.3E-05	5.1E-05	4.4E-05		
SSE	3.3E-04	5.7E-05	4.9E-05	4.4E-05	Business	
SE	4.5E-04	6.3E-05	5.1E-05	4.4E-05		
ESE	7.4E-04	7.7E-05	5.5E-05	4.4E-05		
E	9.7E-04	8.7E-05	5.9E-05	4.4E-05	Farm	
ENE	8.0E-04	7.9E-05	5.6E-05	4.4E-05		
NE	5.1E-04	6.5E-05	5.1E-05	4.4E-05		
NNE	4.4E-04	6.2E-05	5.0E-05	4.4E-05		

Note: Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2020 Radionuclide Emissions NESHAP Report (Appendix B) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

SUMMARY Page 6

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

			Dist	ance (m)
Directio	n 83	453	791	5722
N	6.8E-10	4.7E-11	2.7E-11	1.6E-11
NNW	3.6E-10	3.2E-11	2.1E-11	1.6E-11
NW	4.1E-10	3.4E-11	2.2E-11	1.6E-11
WNW	5.0E-10	3.8E-11	2.4E-11	1.6E-11
M	3.9E-10	3.3E-11	2.4E-11 2.2E-11	1.6E-11
WSW	1.9E-10	2.4E-11	1.9E-11	1.6E-11
SW	2.7E-10	2.7E-11	2.0E-11	1.6E-11
SSW	3.3E-10	3.0E-11	2.1E-11	1.6E-11
S	2.9E-10	2.8E-11	2.0E-11	1.6E-11
SSE	2.1E-10	2.5E-11	1.9E-11	1.6E-11
SE	2.9E-10	2.9E-11	2.0E-11	1.6E-11
ESE	4.9E-10	3.8E-11	2.4E-11	1.6E-11
E	6.4E-10	4.5E-11	2.6E-11	1.6E-11
ENE	5.3E-10	4.0E-11	2.4E-11	1.6E-11
NE	3.3E-10	3.0E-11	2.1E-11	1.6E-11
NNE	2.8E-10	2.8E-11	2.0E-11	1.6E-11

CAP88 OUTPUT RESULTS

GUNTHER SALT

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Wed Mar 17 12:25:44 2021

Facility: Gunther Salt

Address:

City: St. Louis

State: MO Zip: 63147

Source Category: Area Source Type: Area Emission Year: 2020 DOSE Age Group: Adult

Comments: Air

Dataset Name: Gunther Salt.

Dataset Date: Mar 17, 2021 12:25 PM

Wind File: C:\Users\finkenbinec\Documents\CAP88\Wind Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
019011	(1112 0111)
Adrenals	2.02E-02
UB_Wall	2.21E-02
Bone_Sur	1.47E+00
Brain	2.12E-02
Breasts	2.31E-02
St_Wall	2.15E-02
SI_Wall	2.13E-02
ULI_Wall	2.26E-02
LLI_Wall	2.55E-02
Kidneys	5.01E-02
Liver	5.69E-02
Muscle	2.37E-02
Ovaries	2.94E-02
Pancreas	2.04E-02
R_Marrow	8.24E-02
Skin	3.80E-01
Spleen	2.16E-02
Testes	3.24E-02
Thymus	2.13E-02
Thyroid	2.21E-02
GB_Wall	2.05E-02
Ht_Wall	2.12E-02
Uterus	2.10E-02 9.46E-02
ET_Reg	9.46E-02 2.95E-01
Lung	2.956-01
Effectiv	8.41E-02

PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY

Pathway	Selected Individual (mrem)
INGESTION	4.30E-03
INHALATION	5.83E-02
AIR IMMERSION	5.00E-07
GROUND SURFACE	2.15E-02
INTERNAL	6.26E-02
EXTERNAL	2.15E-02
TOTAL	8.41E-02

SUMMARY Page 2

NUCLIDE EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
U-238	7.93E-03
Th-234	4.43E-04
Pa-234m	2.99E-03
Pa-234	5.90E-05
U-234	9.57E-03
Th-230	9.24E-03
Ra-226	4.04E-03
Rn-222	2.85E-06
Po-218	5.09E-11
Pb-214	1.86E-03
At-218	1.91E-10
Bi-214	1.09E-02
Rn-218	1.11E-12
Po-214	6.02E-07
T1-210	4.24E-06
Pb-210	9.16E-06
Bi-210	1.48E-04
Hg-206	1.20E-11
Po-210	3.84E-08
T1-206	3.46E-10
U-235	7.56E-04
Th-231	2.48E-05
Pa-231	1.92E-02
Ac-227	2.13E-07
Th-227	1.01E-04
Fr-223	9.52E-07
Ra-223	1.13E-04
Rn-219	4.89E-05
At-219	0.00E+00
Bi-215	2.20E-10
Po-215	1.49E-07
Pb-211	9.61E-05
Bi-211	3.96E-05
T1-207	4.98E-05
Po-211	1.91E-08
Th-232	3.26E-03
Ra-228	4.16E-03
Ac-228	1.75E-03
Th-228	4.38E-03
Ra-224	2.99E-04
Rn-220 Po-216	1.21E-06 2.93E-08
Pb-216 Pb-212	2.93E-08 2.67E-04
Bi-212	3.11E-04
Po-212	0.00E+00
T1-208	2.15E-03
TOTAL	8.41E-02

SUMMARY Page 3

CANCER RISK SUMMARY

Cancer	Selected Individual Total Lifetime Fatal Cancer Risk
Esophagu Stomach Colon Liver LUNG Bone Skin Breast Ovary Bladder Kidneys Thyroid Leukemia Residual Total	2.12E-10 7.85E-10 2.29E-09 7.24E-10 3.58E-08 1.04E-09 3.77E-10 9.53E-10 3.58E-10 5.10E-10 2.44E-10 6.38E-11 1.21E-09 2.99E-09 4.75E-08
TOTAL	4.75E-08

PATHWAY RISK SUMMARY

	Selected Individual Total Lifetime
Pathway	Fatal Cancer Risk
INGESTION	1.50E-09
INHALATION	3.58E-08
AIR IMMERSION	2.36E-13
GROUND SURFACE	1.02E-08
INTERNAL	3.73E-08
EXTERNAL	1.02E-08
TOTAL	4.75E-08

SUMMARY Page 4

NUCLIDE RISK SUMMARY

Nuclide	Selected Individual Total Lifetime Fatal Cancer Risk
U-238	8.21E-09
Th-234	3.75E-10
Pa-234m	5.24E-10
Pa-234	3.21E-11
U-234	1.00E-08
Th-230	4.95E-09
Ra-226	3.39E-09
Rn-222	1.55E-12
Po-218	2.27E-17
Pb-214	9.95E-10
At-218	2.36E-17
Bi-214	5.74E-09
Rn-218	6.06E-19
Po-214	3.31E-13
Tl-210	2.27E-12
Pb-210	4.10E-12
Bi-210 Hg-206	1.64E-11 5.30E-18 2.11E-14
Po-210 T1-206 U-235	3.89E-17 6.69E-10
Th-231	1.16E-11
Pa-231	1.88E-09
Ac-227	7.95E-14
Th-227	5.47E-11
Fr-223	3.55E-13
Ra-223	6.10E-11
Rn-219	2.68E-11
At-219	0.00E+00
Bi-215	9.82E-17
Po-215	8.20E-14
Pb-211	3.43E-11
Bi-211	2.16E-11
Tl-207	6.40E-12
Po-211	1.04E-14
Th-232	1.44E-09
Ra-228	1.90E-09
Ac-228	9.33E-10
Th-228	4.45E-09
Ra-224	3.45E-10
Rn-220	6.65E-13
Po-216	1.61E-14
Pb-212	1.45E-10
Bi-212 Po-212 T1-208	1.43E-10 1.20E-10 0.00E+00 1.17E-09
TOTAL	4.75E-08

SUMMARY Page 5

INDIVIDUAL EFFECTIVE DOSE EQUIVALENT (mrem) (All Radionuclides and Pathways)

	Distance (m)				
Direction	n 222	302	777	5896	
N	8.4E-02	4.9E-02	1.1E-02	3.6E-03	
NNW	4.5E-02	2.7E-02	7.4E-03	3.5E-03	
NW	5.2E-02	3.1E-02	8.0E-03	3.5E-03	School
WNW	6.3E-02	3.7E-02	9.1E-03	3.6E-03	
W	4.8E-02	2.9E-02	7.7E-03	3.5E-03	Residence
WSW	2.5E-02	1.6E-02	5.4E-03	3.4E-03	
SW	3.4E-02	2.1E-02	6.2E-03	3.4E-03	
SSW	4.1E-02	2.5E-02	6.9E-03	3.5E-03	
S	3.6E-02	2.2E-02	6.6E-03	3.5E-03	
SSE	2.6E-02	1.6E-02	5.6E-03	3.4E-03	
SE	3.7E-02	2.2E-02	6.6E-03	3.5E-03	
ESE	6.1E-02	3.6E-02	8.9E-03	3.5E-03	
E	8.0E-02	4.6E-02	1.1E-02	3.6E-03	Farm
ENE	6.7E-02	3.9E-02	9.3E-03	3.6E-03	
NE	4.2E-02	2.5E-02	7.0E-03	3.5E-03	Business
NNE	3.5E-02	2.1E-02	6.4E-03	3.5E-03	

Note: Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2020 Radionuclide Emissions NESHAP Report (Appendix B) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

SUMMARY Page 6

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

Direction	Distance (m)			
	222	302	777	5896
N	4.8E-08	2.7E-08	5.7E-09	1.3E-09
NNW	2.5E-08	1.5E-08	3.5E-09	1.3E-09
NW	2.9E-08	1.7E-08	3.9E-09	1.3E-09
WNW	3.6E-08	2.1E-08	4.4E-09	1.3E-09
W	2.7E-08	1.6E-08	3.6E-09	1.3E-09
WSW	1.4E-08	8.2E-09	2.4E-09	1.2E-09
SW	1.9E-08	1.1E-08	2.8E-09	1.2E-09
SSW	2.3E-08	1.3E-08	3.2E-09	1.2E-09
S	2.0E-08	1.2E-08	3.0E-09	1.2E-09
SSE	1.4E-08	8.7E-09	2.5E-09	1.2E-09
SE	2.0E-08	1.2E-08	3.1E-09	1.2E-09
ESE	3.4E-08	2.0E-08	4.4E-09	1.3E-09
E	4.5E-08	2.6E-08	5.3E-09	1.3E-09
ENE	3.7E-08	2.2E-08	4.6E-09	1.3E-09
NE	2.3E-08	1.4E-08	3.3E-09	1.2E-09
NNE	2.0E-08	1.2E-08	2.9E-09	1.2E-09

CAP88 OUTPUT RESULTS PLANT 6 LOADOUT

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Wed Mar 17 12:51:58 2021

Facility: Plant 6 Loadout
Address: SLDS
City: St. Louis
State: MO Zip Zip: 63147

Source Category: Area Source Type: Area Emission Year: 2020 DOSE Age Group: Adult

Comments: Air

Dataset Name: Plant 6 Loadout.
Dataset Date: Mar 17, 2021 12:51 PM
 Wind File: C:\Users\finkenbinec\Documents\CAP88\Wind Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
Adrenals UB_Wall Bone_Sur Brain Breasts St_Wall SI_Wall ULI_Wall LLI_Wall Kidneys Liver Muscle Ovaries Pancreas R_Marrow Skin Spleen Testes Thymus Thyroid GB_Wall Ht_Wall Uterus ET_Reg Lung	4.16E-02 4.51E-02 3.33E+00 4.34E-02 4.71E-02 4.39E-02 4.36E-02 4.64E-02 5.20E-02 9.61E-02 2.47E-01 4.82E-02 6.83E-02 4.18E-02 1.85E-01 6.96E-01 4.42E-02 7.41E-02 4.36E-02 4.52E-02 4.34E-02 4.34E-02 4.31E-02 4.31E-02 1.87E-01 5.79E-01
Effectiv	1.82E-01

PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY

Pathway	Selected Individual (mrem)
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	6.53E-03 1.34E-01 1.37E-06 4.11E-02 1.41E-01 4.11E-02
TOTAL	1.82E-01

SUMMARY Page 2

NUCLIDE EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
U-238	1.38E-02
Th-234	8.10E-04
Pa-234m	5.19E-03
Pa-234	1.02E-04
U-234	1.66E-02
Th-230	1.76E-02
Ra-226	7.11E-03
Rn-222	5.37E-06
Po-218	9.60E-11
Pb-214	3.51E-03
At-218	3.61E-10
Bi-214	2.05E-02
Rn-218	2.09E-12
Po-214	1.14E-06
T1-210	8.00E-06
Pb-210	1.73E-05
Bi-210	2.79E-04
Hg-206	2.25E-11
Po-210	7.23E-08
T1-206	6.52E-10
U-235	1.37E-03
Th-231	4.49E-05
Pa-231	3.50E-02
Ac-227	2.65E-02
Th-227	3.29E-04
Fr-223	3.10E-06
Ra-223	3.68E-04
Rn-219	1.59E-04
At-219	0.00E+00
Bi-215	7.15E-10
Po-215	4.86E-07
Pb-211	3.13E-04
Bi-211	1.29E-04
T1-207	1.62E-04
Po-211	6.20E-08
Th-232	6.20E-03
Ra-228	7.77E-03
Ac-228	3.49E-03
Th-228	8.36E-03
Ra-224	5.73E-04
Rn-220	2.41E-06
Po-216	5.80E-08
Pb-212	5.28E-04
Bi-212	6.16E-04
Po-212	0.00E+00
T1-208	4.26E-03
TOTAL	1.82E-01

SUMMARY Page 3

CANCER RISK SUMMARY

Cancer	Selected Individual Total Lifetime Fatal Cancer Risk
Esophagu Stomach Colon Liver LUNG Bone Skin Breast Ovary Bladder Kidneys Thyroid Leukemia Residual Total	4.25E-10 1.55E-09 4.40E-09 3.10E-09 6.99E-08 2.26E-09 6.89E-10 1.86E-09 7.99E-10 1.02E-09 4.61E-10 1.26E-10 2.38E-09 5.83E-09 9.48E-08
TOTAL	9.48E-08

PATHWAY RISK SUMMARY

	Selected Individual Total Lifetime
Pathway	Fatal Cancer Risk
INGESTION	2.27E-09
INHALATION	7.29E-08
AIR IMMERSION	6.70E-13
GROUND SURFACE	1.97E-08
INTERNAL	7.52E-08
EXTERNAL	1.97E-08
TOTAL	9.48E-08

SUMMARY Page 4

NUCLIDE RISK SUMMARY

Nuclide	Selected Individual Total Lifetime Fatal Cancer Risk
U-238	1.43E-08
Th-234	6.91E-10
Pa-234m	9.08E-10
Pa-234	5.56E-11
U-234	1.75E-08
Th-230	9.45E-09
Ra-226	6.28E-09
Rn-222	2.93E-12
Po-218	4.29E-17
Pb-214	1.88E-09
At-218	4.45E-17
Bi-214	1.08E-08
Rn-218	1.14E-18
Po-214	6.23E-13
T1-210	4.27E-12
Pb-210	7.74E-12
Bi-210	3.09E-11
Hg-206	1.00E-17
Po-210	3.97E-14
T1-206	7.33E-17
U-235	1.22E-09
Th-231	2.11E-11
Pa-231	3.43E-09
Ac-227	7.31E-09
Th-227	1.78E-10
Fr-223	1.15E-12
Ra-223	1.99E-10
Rn-219	8.71E-11
At-219	0.00E+00
Bi-215	3.19E-16
Po-215	2.67E-13
Pb-211	1.12E-10
Bi-211	7.03E-11
T1-207	2.08E-11
Po-211	3.39E-14
Th-232	2.75E-09
Ra-228	3.60E-09
Ac-228	1.86E-09
Th-228	8.49E-09
Ra-224	6.60E-10
Rn-220	1.32E-12
Po-216	3.19E-14
Pb-212	2.87E-10
Bi-212	2.38E-10
Po-212	0.00E+00
T1-208	2.32E-09
TOTAL	9.48E-08

SUMMARY Page 5

INDIVIDUAL EFFECTIVE DOSE EQUIVALENT (mrem) (All Radionuclides and Pathways)

	Distance (m)										
Direction	n 156	495	760	5730							
N	1.8E-01	2.6E-02	1.4E-02	5.0E-03							
NNW	9.5E-02	1.5E-02	9.5E-03	4.8E-03							
NW	1.1E-01	1.7E-02	1.0E-02	4.9E-03							
WNW	1.4E-01	2.0E-02	1.1E-02	4.9E-03							
W	1.0E-01	1.6E-02	9.8E-03	4.8E-03	School						
WSW	5.2E-02	1.0E-02	7.1E-03	4.7E-03							
SW	7.2E-02	1.2E-02	8.1E-03	4.8E-03	Residence						
SSW	8.8E-02	1.4E-02	9.0E-03	4.8E-03							
S	7.7E-02	1.3E-02	8.5E-03	4.8E-03							
SSE	5.5E-02	1.1E-02	7.4E-03	4.7E-03	Business						
SE	7.8E-02	1.3E-02	8.6E-03	4.8E-03							
ESE	1.3E-01	2.0E-02	1.1E-02	4.9E-03							
E	1.7E-01	2.4E-02	1.3E-02	4.9E-03	Farm						
ENE	1.4E-01	2.1E-02	1.2E-02	4.9E-03							
NE	8.9E-02	1.4E-02	9.0E-03	4.8E-03							
NNE	7.5E-02	1.3E-02	8.4E-03	4.8E-03							

Note: Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2020 Radionuclide Emissions NESHAP Report (Appendix B) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

SUMMARY Page 6

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

			Dist	ance (m)
Direction	156	495	760	5730
N	9.5E-08	1.3E-08	6.6E-09	1.8E-09
NNW	4.9E-08	7.3E-09	4.2E-09	1.7E-09
NW	5.8E-08	8.2E-09	4.6E-09	1.7E-09
WNW	7.1E-08	9.7E-09	5.2E-09	1.8E-09
W	5.4E-08	7.7E-09	4.3E-09	1.7E-09
WSW	2.7E-08	4.5E-09	2.9E-09	1.7E-09
SW	3.7E-08	5.7E-09	3.5E-09	1.7E-09
SSW	4.6E-08	6.7E-09	3.9E-09	1.7E-09
S	4.0E-08	6.1E-09	3.6E-09	1.7E-09
SSE	2.8E-08	4.8E-09	3.0E-09	1.7E-09
SE	4.0E-08	6.2E-09	3.7E-09	1.7E-09
ESE	6.8E-08	9.5E-09	5.1E-09	1.8E-09
E	9.0E-08	1.2E-08	6.2E-09	1.8E-09
ENE	7.5E-08	1.0E-08	5.4E-09	1.8E-09
NE	4.6E-08	6.8E-09	3.9E-09	1.7E-09
NNE	3.9E-08	6.0E-09	3.6E-09	1.7E-09

St. Louis Downtown Site Ann	ual Environmental Monitoring Data and Analysis Report for CY 2020
	THIS PAGE INTENTIONALLY LEFT BLANK

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020	St. I	ouis	Downtown	Site Annua	l Environmen	tal Monitoring	Data and	Analysis Re	port for C	CY 2020
--	-------	------	----------	------------	--------------	----------------	----------	-------------	------------	---------

APPENDIX C

ENVIRONMENTAL THERMOLUMINESCENT DOSIMETER, ALPHA TRACK DETECTOR, AND PERIMETER AIR DATA

(On the CD-ROM on the Back Cover of this Report)

St. Louis Downtown Site Annual En	vironmental Monitoring Data and Analysis Report for	CY 2020
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THE	S PAGE INTENTIONALLY LEFT B	LANK

Table C-1. Background Air Particulate Data Results for CY 2020

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
BKG219133	BAP-001	01/06/20	Gross Alpha/Beta	Gross Alpha	3.48E-15	9.98E-16	5.60E-16	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219133	BAP-001	01/06/20	Gross Alpha/Beta	Gross Alpha	3.73E-15	1.03E-15	5.60E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219133	BAP-001	01/06/20	Gross Alpha/Beta	Gross Beta	1.34E-14	1.94E-15	1.33E-15	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219133	BAP-001	01/06/20	Gross Alpha/Beta	Gross Beta	1.55E-14	2.10E-15	1.33E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219134	BAP-001	01/13/20	Gross Alpha/Beta	Gross Alpha	2.80E-15	8.81E-16	5.38E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219134	BAP-001	01/13/20	Gross Alpha/Beta	Gross Beta	1.18E-14	1.78E-15	1.28E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219135	BAP-001	01/21/20	Gross Alpha/Beta	Gross Alpha	7.01E-15	1.35E-15	4.92E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219135	BAP-001	01/21/20	Gross Alpha/Beta	Gross Beta	2.61E-14	2.76E-15	1.17E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219136	BAP-001	01/27/20	Gross Alpha/Beta	Gross Alpha	3.51E-15	1.10E-15	6.74E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219136	BAP-001	01/27/20	Gross Alpha/Beta	Gross Beta	2.01E-14	2.63E-15	1.60E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219137	BAP-001	02/03/20	Gross Alpha/Beta	Gross Alpha	1.60E-15	7.10E-16	5.82E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219137	BAP-001	02/03/20	Gross Alpha/Beta	Gross Beta	1.19E-14	1.86E-15	1.39E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219138	BAP-001	02/10/20	Gross Alpha/Beta	Gross Alpha	2.97E-15	9.23E-16	5.59E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219138	BAP-001	02/10/20	Gross Alpha/Beta	Gross Beta	1.42E-14	2.00E-15	1.33E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219139 BKG219139	BAP-001 BAP-001	02/18/20 02/18/20	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha Gross Beta	2.19E-15 1.34E-14	7.71E-16 1.88E-15	5.22E-16 1.24E-15	μCi/mL μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219139	BAP-001	02/24/20	Gross Alpha/Beta	Gross Alpha	1.60E-15	7.61E-16	6.60E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring Background Air (Particulate Air)-Environmental Monitoring
BKG219140	BAP-001	02/24/20	Gross Alpha/Beta	Gross Beta	1.61E-14	2.31E-15	1.57E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219140	BAP-001	03/03/20	Gross Alpha/Beta	Gross Alpha	1.63E-15	6.76E-16	5.27E-16	μCi/mL	_		Background Air (Particulate Air)-Environmental Monitoring
BKG219141	BAP-001	03/03/20	Gross Alpha/Beta	Gross Beta	1.35E-14	1.89E-15	1.25E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219142	BAP-001	03/09/20	Gross Alpha/Beta	Gross Alpha	5.02E-15	1.35E-15	7.23E-16	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219142	BAP-001	03/09/20	Gross Alpha/Beta	Gross Alpha	5.18E-15	1.37E-15	7.23E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219142	BAP-001	03/09/20	Gross Alpha/Beta	Gross Beta	1.86E-14	2.56E-15	1.62E-15	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219142	BAP-001	03/09/20	Gross Alpha/Beta	Gross Beta	1.88E-14	2.57E-15	1.62E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219143	BAP-001	03/16/20	Gross Alpha/Beta	Gross Alpha	1.91E-15	7.99E-16	6.23E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219143	BAP-001	03/16/20	Gross Alpha/Beta	Gross Beta	1.73E-14	2.30E-15	1.40E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219144	BAP-001	03/23/20	Gross Alpha/Beta	Gross Alpha	1.10E-15	6.64E-16	6.63E-16	μCi/mL	J	T04, T20	Background Air (Particulate Air)-Environmental Monitoring
BKG219144	BAP-001	03/23/20	Gross Alpha/Beta	Gross Beta	1.71E-14	2.35E-15	1.49E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219145	BAP-001	03/30/20	Gross Alpha/Beta	Gross Alpha	7.97E-16	5.28E-16	5.54E-16	μCi/mL	J	T04, T20	Background Air (Particulate Air)-Environmental Monitoring
BKG219145	BAP-001	03/30/20	Gross Alpha/Beta	Gross Beta	1.83E-14	2.26E-15	1.24E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219146	BAP-001	04/06/20	Gross Alpha/Beta	Gross Alpha	4.79E-15	1.14E-15	5.10E-16	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219146	BAP-001	04/06/20	Gross Alpha/Beta	Gross Alpha	4.20E-15	1.06E-15	5.10E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219146	BAP-001	04/06/20	Gross Alpha/Beta	Gross Beta	1.43E-14	1.92E-15	1.24E-15	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219146	BAP-001	04/06/20	Gross Alpha/Beta	Gross Beta	1.43E-14	1.92E-15	1.24E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219147	BAP-001	04/13/20	Gross Alpha/Beta	Gross Alpha	6.24E-15	1.35E-15	5.44E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219147	BAP-001	04/13/20	Gross Alpha/Beta	Gross Beta	1.91E-14	2.34E-15	1.32E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219148	BAP-001	04/20/20	Gross Alpha/Beta	Gross Alpha	6.62E-15	1.37E-15	5.29E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219148	BAP-001	04/20/20	Gross Alpha/Beta	Gross Beta	2.03E-14	2.40E-15	1.29E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219149	BAP-001	04/27/20	Gross Alpha/Beta	Gross Alpha	2.63E-15	8.46E-16	5.15E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219149	BAP-001	04/27/20	Gross Alpha/Beta	Gross Beta	1.23E-14	1.77E-15	1.25E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219150	BAP-001	05/04/20	Gross Alpha/Beta	Gross Alpha	4.08E-15	1.11E-15	5.69E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219150	BAP-001	05/04/20	Gross Alpha/Beta	Gross Beta	1.47E-14	2.04E-15	1.38E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219151	BAP-001	05/11/20	Gross Alpha/Beta	Gross Alpha	2.36E-15	8.08E-16	5.22E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219151	BAP-001	05/11/20	Gross Alpha/Beta	Gross Beta	1.23E-14	1.78E-15	1.27E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219152	BAP-001	05/18/20	Gross Alpha/Beta	Gross Alpha	2.10E-15	8.13E-16	5.84E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring

Table C-1. Background Air Particulate Data Results for CY 2020 (Continued)

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
BKG219152	BAP-001	05/18/20	Gross Alpha/Beta	Gross Beta	1.38E-14	2.00E-15	1.42E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219153	BAP-001	05/26/20	Gross Alpha/Beta	Gross Alpha	-5.00E-17	1.71E-16	4.30E-16	μCi/mL	UJ	T06	Background Air (Particulate Air)-Environmental Monitoring
BKG219153	BAP-001	05/26/20	Gross Alpha/Beta	Gross Beta	3.39E-16	6.01E-16	1.04E-15	μCi/mL	UJ	T06	Background Air (Particulate Air)-Environmental Monitoring
BKG219154	BAP-001	06/01/20	Gross Alpha/Beta	Gross Alpha	1.87E-15	7.96E-16	6.20E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219154	BAP-001	06/01/20	Gross Alpha/Beta	Gross Beta	1.13E-14	1.86E-15	1.51E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219155	BAP-001	06/08/20	Gross Alpha/Beta	Gross Alpha	3.42E-15	1.02E-15	5.79E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219155	BAP-001	06/08/20	Gross Alpha/Beta	Gross Beta	1.99E-14	2.46E-15	1.41E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219156	BAP-001	06/15/20	Gross Alpha/Beta	Gross Alpha	2.56E-15	8.34E-16	5.14E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219156	BAP-001	06/15/20	Gross Alpha/Beta	Gross Beta	1.41E-14	1.91E-15	1.25E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219157	BAP-001	06/22/20	Gross Alpha/Beta	Gross Alpha	1.87E-15	7.65E-16	5.76E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219157	BAP-001	06/22/20	Gross Alpha/Beta	Gross Beta	2.39E-14	2.76E-15	1.40E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219158	BAP-001	06/29/20	Gross Alpha/Beta	Gross Alpha	1.37E-15	5.98E-16	4.74E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219158	BAP-001	06/29/20	Gross Alpha/Beta	Gross Beta	1.69E-14	2.06E-15	1.15E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219159	BAP-001	07/06/20	Gross Alpha/Beta	Gross Alpha	6.75E-15	1.40E-15	6.02E-16	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219159	BAP-001	07/06/20	Gross Alpha/Beta	Gross Alpha	5.14E-15	1.22E-15	6.02E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219159	BAP-001	07/06/20	Gross Alpha/Beta	Gross Beta	1.72E-14	2.22E-15	1.35E-15	μCi/mL	1		Background Air (Particulate Air)-Environmental Monitoring
BKG219159	BAP-001	07/06/20	Gross Alpha/Beta	Gross Beta	1.76E-14	2.25E-15	1.35E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219160	BAP-001	07/13/20	Gross Alpha/Beta	Gross Alpha	6.23E-15	1.35E-15	6.05E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219160	BAP-001	07/13/20	Gross Alpha/Beta	Gross Beta	2.11E-14	2.51E-15	1.35E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219161	BAP-001	07/20/20	Gross Alpha/Beta	Gross Alpha	3.51E-15	1.00E-15	5.99E-16	μCi/mL	+ =		Background Air (Particulate Air)-Environmental Monitoring
BKG219161	BAP-001	07/20/20	Gross Alpha/Beta	Gross Beta	1.48E-14	2.03E-15	1.34E-15	μCi/mL	 		Background Air (Particulate Air)-Environmental Monitoring
BKG219162	BAP-001	07/27/20	Gross Alpha/Beta	Gross Alpha	4.34E-15	1.12E-15	6.03E-16	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219162	BAP-001	07/27/20	Gross Alpha/Beta	Gross Beta	1.26E-14	1.87E-15	1.35E-15	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219163	BAP-001	08/03/20	Gross Alpha/Beta	Gross Alpha	3.55E-15	1.02E-15	6.06E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219163	BAP-001	08/03/20	Gross Alpha/Beta	Gross Beta	1.54E-14	2.10E-15	1.36E-15	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219164	BAP-001	08/10/20	Gross Alpha/Beta	Gross Alpha	2.76E-15	8.92E-16	5.97E-16	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219164	BAP-001	08/10/20	Gross Alpha/Beta	Gross Beta	1.50E-14	2.05E-15	1.34E-15	μCi/mL	 		Background Air (Particulate Air)-Environmental Monitoring
BKG219165	BAP-001	08/17/20	Gross Alpha/Beta	Gross Alpha	4.34E-15	1.11E-15	5.94E-16	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219165	BAP-001	08/17/20	Gross Alpha/Beta	Gross Beta	1.79E-14	2.26E-15	1.33E-15	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219166	BAP-001	08/23/20	Gross Alpha/Beta	Gross Alpha	4.15E-15	1.14E-15	6.50E-16	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219166	BAP-001	08/23/20	Gross Alpha/Beta	Gross Beta	2.30E-14	2.73E-15	1.45E-15	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219167	BAP-001	08/31/20	Gross Alpha/Beta	Gross Alpha	4.13E-15	1.12E-15	6.37E-16	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219167	BAP-001	08/31/20	Gross Alpha/Beta	Gross Beta	2.61E-14	2.94E-15	1.42E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219168	BAP-001	09/08/20	Gross Alpha/Beta	Gross Alpha	3.17E-15	8.83E-16	5.14E-16	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219168	BAP-001	09/08/20	Gross Alpha/Beta	Gross Beta	2.34E-14	2.54E-15	1.15E-15	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219169	BAP-001	09/14/20	Gross Alpha/Beta	Gross Alpha	3.35E-15	1.06E-15	6.93E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219169	BAP-001	09/14/20	Gross Alpha/Beta	Gross Beta	3.01E-14	3.32E-15	1.55E-15	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219170	BAP-001	09/21/20	Gross Alpha/Beta	Gross Alpha	2.31E-15	8.41E-16	6.25E-16	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219170	BAP-001	09/21/20	Gross Alpha/Beta	Gross Beta	2.92E-14	3.14E-15	1.40E-15	μCi/mL	+=		Background Air (Particulate Air)-Environmental Monitoring
BKG219171	BAP-001	09/21/20	Gross Alpha/Beta	Gross Alpha	2.34E-15	8.06E-16	5.70E-16	μCi/mL	+ =		Background Air (Particulate Air)-Environmental Monitoring
			*	*	2.34E-13 2.49E-14	+ + + + + + + + + + + + + + + + + + + +		·	+ =		Background Air (Particulate Air)-Environmental Monitoring
BKG219171	BAP-001	09/28/20	Gross Alpha/Beta	Gross Alpha		2.74E-15	1.28E-15	μCi/mL	+=		
BKG219172	BAP-001	10/03/20	Gross Alpha/Beta	Gross Alpha	2.54E-15	9.04E-16	5.48E-16	μCi/mL	+	-	Background Air (Particulate Air)-Environmental Monitoring
BKG219172	BAP-001	10/03/20	Gross Alpha/Beta	Gross Alpha	3.78E-15	1.10E-15	5.48E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219172	BAP-001	10/03/20	Gross Alpha/Beta	Gross Beta	1.01E-14	1.69E-15	1.11E-15	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219172	BAP-001	10/03/20	Gross Alpha/Beta	Gross Beta	9.82E-15	1.66E-15	1.11E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring

Table C-1. Background Air Particulate Data Results for CY 2020 (Continued)

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
BKG219173	BAP-001	10/12/20	Gross Alpha/Beta	Gross Alpha	8.91E-15	1.54E-15	4.15E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219173	BAP-001	10/12/20	Gross Alpha/Beta	Gross Beta	2.80E-14	2.84E-15	8.41E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219174	BAP-001	10/19/20	Gross Alpha/Beta	Gross Alpha	4.11E-15	1.07E-15	4.70E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219174	BAP-001	10/19/20	Gross Alpha/Beta	Gross Beta	1.56E-14	2.01E-15	9.52E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219175	BAP-001	10/26/20	Gross Alpha/Beta	Gross Alpha	4.32E-15	1.11E-15	4.80E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219175	BAP-001	10/26/20	Gross Alpha/Beta	Gross Beta	1.47E-14	1.95E-15	9.72E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219176	BAP-001	11/02/20	Gross Alpha/Beta	Gross Alpha	5.64E-15	1.25E-15	4.58E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219176	BAP-001	11/02/20	Gross Alpha/Beta	Gross Beta	2.16E-14	2.44E-15	9.27E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219177	BAP-001	11/09/20	Gross Alpha/Beta	Gross Alpha	5.36E-15	1.28E-15	5.12E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219177	BAP-001	11/09/20	Gross Alpha/Beta	Gross Beta	2.38E-14	2.70E-15	1.04E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219178	BAP-001	11/17/20	Gross Alpha/Beta	Gross Alpha	3.39E-15	8.87E-16	3.94E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219178	BAP-001	11/17/20	Gross Alpha/Beta	Gross Beta	1.77E-14	2.03E-15	7.98E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219179	BAP-001	11/23/20	Gross Alpha/Beta	Gross Alpha	3.97E-15	1.14E-15	5.55E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219179	BAP-001	11/23/20	Gross Alpha/Beta	Gross Beta	2.09E-14	2.56E-15	1.12E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219180	BAP-001	12/01/20	Gross Alpha/Beta	Gross Alpha	4.24E-15	1.06E-15	4.44E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219180	BAP-001	12/01/20	Gross Alpha/Beta	Gross Beta	2.81E-14	2.90E-15	8.99E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219181	BAP-001	12/07/20	Gross Alpha/Beta	Gross Alpha	3.74E-15	1.06E-15	5.13E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219181	BAP-001	12/07/20	Gross Alpha/Beta	Gross Beta	3.11E-14	3.25E-15	1.04E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219182	BAP-001	12/14/20	Gross Alpha/Beta	Gross Alpha	4.77E-15	1.19E-15	5.00E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219182	BAP-001	12/14/20	Gross Alpha/Beta	Gross Beta	4.21E-14	4.02E-15	1.01E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring

VQs:

^{= -} Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

UJ - Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate. Validation Reason Codes:

T04 - Radionuclide Quantitation: Professional judgment was used to qualify the data.

T06 - Radionuclide Quantitation: Analytical result is less than both the associated counting uncertainty and MDA.

T20 - Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainty 50 to 100 percent of the result.

Table C-2. SLDS TLD (External Gamma Radiation) Results for CY 2020

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
HIS211288	BA-1	04/02/20	Radiological	External gamma radiation	18.9	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2020
HIS211289	BA-1	07/08/20	Radiological	External gamma radiation	22.9	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2020
HIS211290	BA-1	10/05/20	Radiological	External gamma radiation	20.9	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2020
HIS215172	BA-1	01/06/21	Radiological	External gamma radiation	19.9	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2020
SLD223054	DA-3	04/02/20	Radiological	External gamma radiation	18.9	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2020
SLD228557	DA-3	07/08/20	Radiological	External gamma radiation	20.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2020
SLD231454	DA-3	10/05/20	Radiological	External gamma radiation	19.8	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2020
SLD237475	DA-3	01/06/21	Radiological	External gamma radiation	19	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2020
SLD223055	DA-8	04/02/20	Radiological	External gamma radiation	20.9	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2020
SLD228558	DA-8	07/08/20	Radiological	External gamma radiation	23.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2020
SLD231455	DA-8	10/05/20	Radiological	External gamma radiation	22.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2020
SLD237476	DA-8	01/06/21	Radiological	External gamma radiation	19.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2020
SLD223056	DA-8dup	04/02/20	Radiological	External gamma radiation	21.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2020
SLD228558-1	DA-8dup	07/08/20	Radiological	External gamma radiation	24.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2020
SLD231455-1	DA-8dup	10/05/20	Radiological	External gamma radiation	22.2	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2020
SLD237476-1	DA-8dup	01/06/21	Radiological	External gamma radiation	19.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2020
SLD223056-1	DA-9	04/02/20	Radiological	External gamma radiation	21.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2020
SLD228559	DA-9	07/08/20	Radiological	External gamma radiation	24.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2020
SLD231456	DA-9	10/05/20	Radiological	External gamma radiation	23.2	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2020
SLD237477	DA-9	01/06/21	Radiological	External gamma radiation	19.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2020
SLD223057	DA-10	04/02/20	Radiological	External gamma radiation	22.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2020
SLD228560	DA-10	07/08/20	Radiological	External gamma radiation	21.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2020
SLD231457	DA-10	10/05/20	Radiological	External gamma radiation	18.8	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2020
SLD237478	DA-10	01/06/21	Radiological	External gamma radiation	17.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2020
SLD223058	DA-11	04/02/20	Radiological	External gamma radiation	19.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2020
SLD228561	DA-11	07/08/20	Radiological	External gamma radiation	22.2	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2020
SLD231458	DA-11	10/05/20	Radiological	External gamma radiation	20.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2020
SLD237479	DA-11	01/06/21	Radiological	External gamma radiation	17.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2020
SLD223059	DA-12	04/02/20	Radiological	External gamma radiation	18.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2020
SLD228562	DA-12	07/08/20	Radiological	External gamma radiation	23.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2020
SLD231459	DA-12	10/05/20	Radiological	External gamma radiation	22.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2020
SLD237480	DA-12	01/06/21	Radiological	External gamma radiation	19.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2020

VO

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample. Validation Reason Code:

Y01 - FUSRAP Only: Not enough supporting documentation to perform validation.

Table C-3. SLDS Perimeter Air Data Results for CY 2020

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD222408	Plant 7W	05/11/20	Gross Alpha/Beta	Gross Alpha	2.83E-15	6.42E-15	1.01E-14	μCi/mL	=		Plant 7W (General Area)-Perimeter Air
SLD222408	Plant 7W	05/11/20	Gross Alpha/Beta	Gross Beta	1.02E-14	1.41E-14	1.86E-14	μCi/mL	UJ	T06	Plant 7W (General Area)-Perimeter Air
SLD222409	Plant 7W	05/12/20	Gross Alpha/Beta	Gross Alpha	1.81E-15	6.64E-15	1.13E-14	μCi/mL	UJ	T06	Plant 7W (General Area)-Perimeter Air
SLD222409	Plant 7W	05/12/20	Gross Alpha/Beta	Gross Beta	1.49E-14	1.61E-14	2.08E-14	μCi/mL	UJ	T06	Plant 7W (General Area)-Perimeter Air
SLD222410	Plant 7W	05/13/20	Gross Alpha/Beta	Gross Alpha	6.26E-16	8.40E-15	1.56E-14	μCi/mL	J	T04, T20	Plant 7W (General Area)-Perimeter Air
SLD222410	Plant 7W	05/13/20	Gross Alpha/Beta	Gross Beta	7.27E-15	2.08E-14	2.89E-14	μCi/mL	UJ	T06	Plant 7W (General Area)-Perimeter Air
SLD222411	Plant 7W	05/19/20	Gross Alpha/Beta	Gross Alpha	8.54E-16	1.15E-14	2.13E-14	μCi/mL	UJ	T06	Plant 7W (General Area)-Perimeter Air
SLD222411	Plant 7W	05/19/20	Gross Alpha/Beta	Gross Beta	-3.31E-15	2.68E-14	3.94E-14	μCi/mL	UJ	T06	Plant 7W (General Area)-Perimeter Air
SLD216330	GUNTHER SALT	01/02/20	Gross Alpha/Beta	Gross Alpha	1.24E-14	8.52E-15	8.54E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216330	GUNTHER SALT	01/02/20	Gross Alpha/Beta	Gross Beta	2.94E-14	1.40E-14	1.85E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216330	GUNTHER SALT	01/02/20	Gross Alpha/Beta	Gross Beta	4.66E-14	1.60E-14	1.85E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216330	GUNTHER SALT	01/02/20	Gross Alpha/Beta	Gross Alpha	2.80E-15	5.10E-15	8.54E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216331	GUNTHER SALT	01/06/20	Gross Alpha/Beta	Gross Alpha	2.76E-15	5.03E-15	8.42E-15	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216331	GUNTHER SALT	01/06/20	Gross Alpha/Beta	Gross Beta	7.38E-15	1.10E-14	1.82E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216332	GUNTHER SALT	01/07/20	Gross Alpha/Beta	Gross Beta	2.55E-14	1.35E-14	1.85E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216332	GUNTHER SALT	01/07/20	Gross Alpha/Beta	Gross Alpha	1.60E-15	4.50E-15	8.54E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216333	GUNTHER SALT	01/08/20	Gross Alpha/Beta	Gross Alpha	1.52E-15	4.27E-15	8.12E-15	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216333	GUNTHER SALT	01/08/20	Gross Alpha/Beta	Gross Beta	1.18E-15	9.68E-15	1.76E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216334	GUNTHER SALT	01/09/20	Gross Alpha/Beta	Gross Alpha	6.39E-15	6.59E-15	8.54E-15	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216334	GUNTHER SALT	01/09/20	Gross Alpha/Beta	Gross Beta	1.45E-14	1.21E-14	1.85E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216335	GUNTHER SALT	01/13/20	Gross Alpha/Beta	Gross Beta	4.85E-14	1.56E-14	1.75E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216335	GUNTHER SALT	01/13/20	Gross Alpha/Beta	Gross Alpha	3.78E-16	3.60E-15	8.08E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216336	GUNTHER SALT	01/14/20	Gross Alpha/Beta	Gross Beta	4.13E-14	1.47E-14	1.73E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216336	GUNTHER SALT	01/14/20	Gross Alpha/Beta	Gross Alpha	2.61E-15	4.76E-15	7.97E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216337	GUNTHER SALT	01/15/20	Gross Alpha/Beta	Gross Beta	3.17E-14	1.43E-14	1.85E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216337	GUNTHER SALT	01/15/20	Gross Alpha/Beta	Gross Alpha	3.99E-15	5.64E-15	8.54E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216338	GUNTHER SALT	01/16/20	Gross Alpha/Beta	Gross Beta	3.33E-14	1.42E-14	1.81E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216338	GUNTHER SALT	01/16/20	Gross Alpha/Beta	Gross Alpha	2.73E-15	4.98E-15	8.34E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216339	GUNTHER SALT	01/22/20	Gross Alpha/Beta	Gross Beta	3.95E-14	2.18E-14	2.79E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216339	GUNTHER SALT	01/22/20	Gross Alpha/Beta	Gross Alpha	5.66E-15	8.69E-15	1.42E-14	μCi/mL	=	,	Gunther Salt (General Area)-Perimeter Air
SLD216340	GUNTHER SALT	01/23/20	Gross Alpha/Beta	Gross Beta	2.55E-14	1.37E-14	1.75E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216340	GUNTHER SALT	01/23/20	Gross Alpha/Beta	Gross Alpha	3.54E-15	5.44E-15	8.92E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216341	GUNTHER SALT	01/27/20	Gross Alpha/Beta	Gross Beta	2.77E-14	1.43E-14	1.79E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216341	GUNTHER SALT	01/27/20	Gross Alpha/Beta	Gross Alpha	3.63E-15	5.57E-15	9.13E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216342	GUNTHER SALT	01/29/20	Gross Alpha/Beta	Gross Alpha	1.21E-15	4.39E-15	9.13E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216342	GUNTHER SALT	01/29/20	Gross Alpha/Beta	Gross Beta	1.51E-14	1.27E-14	1.79E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216343	GUNTHER SALT	01/30/20	Gross Alpha/Beta	Gross Alpha	3.48E-15	5.34E-15	8.75E-15	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216343	GUNTHER SALT	01/30/20	Gross Alpha/Beta	Gross Beta	1.52E-14	1.23E-14	1.71E-14	μCi/mL	=	, -	Gunther Salt (General Area)-Perimeter Air
SLD216344	GUNTHER SALT	02/03/20	Gross Alpha/Beta	Gross Alpha	8.57E-15	6.90E-15	8.09E-15	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216344	GUNTHER SALT	02/03/20	Gross Alpha/Beta	Gross Beta	3.85E-14	1.42E-14	1.58E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216345	GUNTHER SALT	02/04/20	Gross Alpha/Beta	Gross Alpha	-1.86E-15	4.64E-15	1.04E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216345	GUNTHER SALT	02/04/20	Gross Alpha/Beta	Gross Beta	1.40E-14	1.58E-14	2.32E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216346	GUNTHER SALT	02/05/20	Gross Alpha/Beta	Gross Alpha	-1.05E-15	7.23E-15	1.46E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216346	GUNTHER SALT	02/05/20	Gross Alpha/Beta	Gross Beta	1.55E-14	2.18E-14	3.26E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216347	GUNTHER SALT	02/06/20	Gross Alpha/Beta	Gross Alpha	4.98E-15	7.38E-15	1.06E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD216347	GUNTHER SALT	02/06/20	Gross Alpha/Beta	Gross Beta	3.70E-15	1.52E-14	2.39E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216348	GUNTHER SALT	02/10/20	Gross Alpha/Beta	Gross Alpha	1.05E-14	8.85E-15	1.05E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216348	GUNTHER SALT	02/10/20	Gross Alpha/Beta	Gross Beta	4.72E-14	1.91E-14	2.34E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216349	GUNTHER SALT	02/11/20	Gross Alpha/Beta	Gross Beta	3.05E-14	1.71E-14	2.27E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216349	GUNTHER SALT	02/11/20	Gross Alpha/Beta	Gross Alpha	4.74E-15	7.02E-15	1.01E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216350	GUNTHER SALT	02/12/20	Gross Alpha/Beta	Gross Alpha	6.02E-15	7.59E-15	1.05E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216350	GUNTHER SALT	02/12/20	Gross Alpha/Beta	Gross Beta	1.49E-14	1.60E-14	2.34E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216351	GUNTHER SALT	02/13/20	Gross Alpha/Beta	Gross Beta	4.41E-14	2.04E-14	2.60E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216351	GUNTHER SALT	02/13/20	Gross Alpha/Beta	Gross Alpha	6.69E-15	8.44E-15	1.16E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216352	GUNTHER SALT	02/25/20	Gross Alpha/Beta	Gross Alpha	-4.24E-15	5.78E-15	1.47E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216352	GUNTHER SALT	02/25/20	Gross Alpha/Beta	Gross Beta	2.74E-14	2.32E-14	3.30E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216352	GUNTHER SALT	02/25/20	Gross Alpha/Beta	Gross Beta	3.80E-14	2.42E-14	3.30E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216352	GUNTHER SALT	02/25/20	Gross Alpha/Beta	Gross Alpha	5.30E-15	9.71E-15	1.47E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216353	GUNTHER SALT	02/26/20	Gross Alpha/Beta	Gross Beta	2.69E-14	1.72E-14	2.34E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216353	GUNTHER SALT	02/26/20	Gross Alpha/Beta	Gross Alpha	4.89E-15	7.25E-15	1.05E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216354	GUNTHER SALT	02/27/20	Gross Alpha/Beta	Gross Alpha	4.78E-15	7.09E-15	1.02E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216354	GUNTHER SALT	02/27/20	Gross Alpha/Beta	Gross Beta	1.46E-14	1.57E-14	2.29E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216355	GUNTHER SALT	03/02/20	Gross Alpha/Beta	Gross Beta	3.71E-14	1.74E-14	2.23E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216355	GUNTHER SALT	03/02/20	Gross Alpha/Beta	Gross Alpha	4.66E-15	6.90E-15	9.95E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216356	GUNTHER SALT	03/03/20	Gross Alpha/Beta	Gross Alpha	4.64E-15	6.87E-15	9.91E-15	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216356	GUNTHER SALT	03/03/20	Gross Alpha/Beta	Gross Beta	1.56E-14	1.53E-14	2.22E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216357	GUNTHER SALT	03/05/20	Gross Alpha/Beta	Gross Beta	2.55E-14	1.61E-14	1.73E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216357	GUNTHER SALT	03/05/20	Gross Alpha/Beta	Gross Alpha	1.22E-15	4.38E-15	8.39E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216357	GUNTHER SALT	03/05/20	Gross Alpha/Beta	Gross Alpha	5.73E-15	6.29E-15	8.39E-15	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216357	GUNTHER SALT	03/05/20	Gross Alpha/Beta	Gross Beta	1.68E-14	1.53E-14	1.73E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216358	GUNTHER SALT	03/09/20	Gross Alpha/Beta	Gross Alpha	-1.03E-15	3.00E-15	8.39E-15	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216358	GUNTHER SALT	03/09/20	Gross Alpha/Beta	Gross Beta	1.39E-14	1.50E-14	1.73E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216359	GUNTHER SALT	03/10/20	Gross Alpha/Beta	Gross Beta	3.65E-14	1.81E-14	1.85E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216359	GUNTHER SALT	03/10/20	Gross Alpha/Beta	Gross Alpha	4.91E-15	6.26E-15	8.95E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216360	GUNTHER SALT	03/11/20	Gross Alpha/Beta	Gross Beta	4.24E-14	1.78E-14	1.74E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216360	GUNTHER SALT	03/11/20	Gross Alpha/Beta	Gross Alpha	5.75E-15	6.32E-15	8.43E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216361	GUNTHER SALT	03/12/20	Gross Alpha/Beta	Gross Beta	2.76E-14	1.71E-14	1.82E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216361	GUNTHER SALT	03/12/20	Gross Alpha/Beta	Gross Alpha	3.65E-15	5.70E-15	8.82E-15	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216362	GUNTHER SALT	03/16/20	Gross Alpha/Beta	Gross Beta	1.94E-14	1.59E-14	1.77E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216362	GUNTHER SALT	03/16/20	Gross Alpha/Beta	Gross Alpha	3.55E-15	5.54E-15	8.58E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216363	GUNTHER SALT	03/17/20	Gross Alpha/Beta	Gross Beta	2.24E-14	1.62E-14	1.77E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216363	GUNTHER SALT	03/17/20	Gross Alpha/Beta	Gross Alpha	-1.06E-15	3.07E-15	8.58E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216364	GUNTHER SALT	03/18/20	Gross Alpha/Beta	Gross Beta	2.06E-14	1.58E-14	1.75E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216364	GUNTHER SALT	03/18/20	Gross Alpha/Beta	Gross Alpha	-1.04E-15	3.03E-15	8.47E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216365	GUNTHER SALT	03/04/20	Gross Alpha/Beta	Gross Alpha	1.22E-15	4.38E-15	8.39E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216365	GUNTHER SALT	03/04/20	Gross Alpha/Beta	Gross Beta	1.61E-14	1.52E-14	1.73E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216366	GUNTHER SALT	04/07/20	Gross Alpha/Beta	Gross Alpha	3.65E-15	8.67E-15	1.75E-14 1.55E-14	μCi/mL	ī	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216366	GUNTHER SALT	04/07/20	Gross Alpha/Beta	Gross Beta	-3.58E-15	5.20E-14	4.16E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216366	GUNTHER SALT GUNTHER SALT	04/07/20	Gross Alpha/Beta	Gross Alpha	3.65E-15	8.67E-15	1.55E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD216366	GUNTHER SALT GUNTHER SALT	04/07/20	Gross Alpha/Beta	Gross Beta	-3.58E-15	5.20E-14	4.16E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD216367		04/08/20		Gross Alpha	7.39E-15	8.73E-15	1.26E-14		UJ	T06	·
SLD/1030/	GUNTHER SALT	04/08/20	Gross Alpha/Beta	Gross Aipna	1.39E-13	0./3E-13	1.20E-14	μCi/mL	UJ	100	Gunther Salt (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	vQ	Validation Reason Code	Sampling Event Name
SLD216367	GUNTHER SALT	04/08/20	Gross Alpha/Beta	Gross Beta	1.96E-15	4.27E-14	3.40E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216368	GUNTHER SALT	04/13/20	Gross Alpha/Beta	Gross Alpha	6.33E-15	8.79E-15	1.35E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216368	GUNTHER SALT	04/13/20	Gross Alpha/Beta	Gross Beta	-7.31E-15	4.53E-14	3.63E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216369	GUNTHER SALT	04/14/20	Gross Alpha/Beta	Gross Alpha	1.64E-15	6.98E-15	1.37E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216369	GUNTHER SALT	04/14/20	Gross Alpha/Beta	Gross Beta	2.13E-15	4.63E-14	3.68E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216370	GUNTHER SALT	04/15/20	Gross Alpha/Beta	Gross Alpha	1.75E-14	1.31E-14	1.50E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216370	GUNTHER SALT	04/15/20	Gross Alpha/Beta	Gross Beta	2.68E-14	5.20E-14	4.04E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216371	GUNTHER SALT	04/20/20	Gross Alpha/Beta	Gross Alpha	6.41E-15	8.90E-15	1.37E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216371	GUNTHER SALT	04/20/20	Gross Alpha/Beta	Gross Beta	1.07E-15	4.62E-14	3.68E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216372	GUNTHER SALT	04/21/20	Gross Alpha/Beta	Gross Alpha	5.19E-15	8.94E-15	1.47E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216372	GUNTHER SALT	04/21/20	Gross Alpha/Beta	Gross Beta	-1.13E-15	4.96E-14	3.96E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216373	GUNTHER SALT	04/21/20	Gross Alpha/Beta	Gross Alpha	1.30E-14	1.22E-14	1.59E-14	μCi/mL	ı	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216373	GUNTHER SALT	04/21/20	Gross Alpha/Beta	Gross Beta	-6.16E-15	5.35E-14	4.29E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216374	GUNTHER SALT	04/27/20	Gross Alpha/Beta	Gross Alpha	1.20E-15	5.09E-15	9.97E-15	μCi/mL	03	100	Gunther Salt (General Area)-Perimeter Air
SLD216374 SLD216374	GUNTHER SALT	04/27/20	*	Gross Beta	1.20E-13 1.00E-14	3.41E-14	2.68E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216374 SLD216375	GUNTHER SALT	04/28/20	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha	8.32E-15	9.84E-15	1.42E-14	μCi/mL	ī	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216375	GUNTHER SALT GUNTHER SALT	04/28/20	Gross Alpha/Beta	Gross Beta	4.42E-15	4.82E-14	3.83E-14	μCi/mL	UJ	T04, 120	Gunther Salt (General Area)-Perimeter Air
SLD216376	GUNTHER SALT	04/29/20	Gross Alpha/Beta	Gross Alpha	-1.72E-15	5.94E-15	1.52E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216376	GUNTHER SALT	04/29/20	Gross Alpha/Beta	Gross Beta	3.55E-15	5.16E-14	4.10E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216377	GUNTHER SALT	04/30/20	Gross Alpha/Beta	Gross Alpha	4.70E-15	8.10E-15	1.33E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216377	GUNTHER SALT	04/30/20	Gross Alpha/Beta	Gross Beta	-1.34E-14	4.44E-14	3.59E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216378	GUNTHER SALT	04/06/20	Gross Alpha/Beta	Gross Alpha	1.38E-14	9.19E-15	9.87E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216378	GUNTHER SALT	04/06/20	Gross Alpha/Beta	Gross Beta	9.95E-15	3.38E-14	2.66E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216379	GUNTHER SALT	05/04/20	Gross Alpha/Beta	Gross Beta	2.54E-14	1.87E-14	2.43E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216379	GUNTHER SALT	05/04/20	Gross Alpha/Beta	Gross Alpha	2.01E-15	5.47E-15	9.01E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216379	GUNTHER SALT	05/04/20	Gross Alpha/Beta	Gross Beta	3.23E-14	1.93E-14	2.43E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216379	GUNTHER SALT	05/04/20	Gross Alpha/Beta	Gross Alpha	3.16E-15	5.93E-15	9.01E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216380	GUNTHER SALT	05/05/20	Gross Alpha/Beta	Gross Alpha	6.74E-15	9.96E-15	1.41E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216380	GUNTHER SALT	05/05/20	Gross Alpha/Beta	Gross Beta	1.59E-14	2.71E-14	3.80E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216381	GUNTHER SALT	05/06/20	Gross Alpha/Beta	Gross Alpha	-4.43E-16	6.78E-15	1.39E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216381	GUNTHER SALT	05/06/20	Gross Alpha/Beta	Gross Beta	1.56E-14	2.67E-14	3.74E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216382	GUNTHER SALT	05/11/20	Gross Alpha/Beta	Gross Alpha	1.21E-15	6.96E-15	1.26E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216382	GUNTHER SALT	05/11/20	Gross Alpha/Beta	Gross Beta	5.63E-15	2.35E-14	3.40E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216383	GUNTHER SALT	05/12/20	Gross Alpha/Beta	Gross Alpha	-4.28E-16	6.55E-15	1.34E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216383	GUNTHER SALT	05/12/20	Gross Alpha/Beta	Gross Beta	2.31E-14	2.65E-14	3.61E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216384 SLD216384	GUNTHER SALT	05/13/20	Gross Alpha/Beta	Gross Alpha	5.75E-15	7.14E-15	9.49E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216384 SLD216385	GUNTHER SALT	05/13/20 05/14/20	Gross Alpha/Beta	Gross Beta Gross Alpha	1.96E-14 1.19E-14	1.90E-14 1.76E-14	2.56E-14 2.50E-14	μCi/mL μCi/mL	UJ UJ	T06 T04, T05	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD216385 SLD216385	GUNTHER SALT GUNTHER SALT	05/14/20	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha Gross Beta	5.56E-14	5.04E-14	6.72E-14	μCi/mL	UJ	T04, 103	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD216385 SLD216386	GUNTHER SALT	05/18/20	Gross Alpha/Beta	Gross Alpha	7.28E-15	9.03E-15	1.20E-14	μCi/mL	I	T04, T20	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD216386	GUNTHER SALT	05/18/20	Gross Alpha/Beta	Gross Beta	2.37E-14	2.40E-14	3.23E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD216387	GUNTHER SALT GUNTHER SALT	05/19/20	Gross Alpha/Beta	Gross Alpha	1.19E-15	6.87E-15	1.25E-14	μCi/mL	I	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216387	GUNTHER SALT	05/19/20	Gross Alpha/Beta	Gross Beta	2.15E-14	2.46E-14	3.36E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216387	GUNTHER SALT	05/20/20	Gross Alpha/Beta	Gross Alpha	7.28E-15	9.03E-15	1.20E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216388	GUNTHER SALT	05/20/20	Gross Alpha/Beta	Gross Beta	3.19E-14	2.47E-14	3.23E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD216389	GUNTHER SALT	05/27/20	Gross Alpha/Beta	Gross Alpha	7.66E-15	9.50E-15	1.26E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216389	GUNTHER SALT	05/27/20	Gross Alpha/Beta	Gross Beta	1.64E-14	2.45E-14	3.40E-14	μCi/mL	UJ	T04, T05	Gunther Salt North (General Area)-Perimeter Air
SLD216390	GUNTHER SALT	05/28/20	Gross Alpha/Beta	Gross Alpha	1.94E-14	1.72E-14	1.97E-14	μCi/mL	J	T04, T20	Gunther Salt North (General Area)-Perimeter Air
SLD216390	GUNTHER SALT	05/28/20	Gross Alpha/Beta	Gross Beta	2.21E-14	3.78E-14	5.29E-14	μCi/mL	UJ	T04, T05	Gunther Salt North (General Area)-Perimeter Air
SLD216391	GUNTHER SALT	06/01/20	Gross Alpha/Beta	Gross Alpha	1.34E-14	9.10E-15	8.97E-15	μCi/mL	J	T04, T20	Gunther Salt North (General Area)-Perimeter Air
SLD216391	GUNTHER SALT	06/01/20	Gross Alpha/Beta	Gross Beta	1.31E-14	1.75E-14	2.42E-14	μCi/mL	UJ	T06	Gunther Salt North (General Area)-Perimeter Air
SLD216392	GUNTHER SALT	06/01/20	Gross Alpha/Beta	Gross Beta	3.96E-14	2.77E-14	3.57E-14	μCi/mL	UJ	T06	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216392	GUNTHER SALT	06/01/20	Gross Alpha/Beta	Gross Alpha	9.71E-15	1.05E-14	1.32E-14	μCi/mL	UJ	T06	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216393	GUNTHER SALT	06/02/20	Gross Alpha/Beta	Gross Alpha	1.29E-14	9.85E-15	1.04E-14	μCi/mL	J	T04, T20	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216393	GUNTHER SALT	06/02/20	Gross Alpha/Beta	Gross Beta	4.62E-14	2.31E-14	2.80E-14	μCi/mL	UJ	T06	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216394	GUNTHER SALT	06/02/20	Gross Alpha/Beta	Gross Beta	3.42E-14	2.58E-14	3.36E-14	μCi/mL			Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216394	GUNTHER SALT	06/02/20	Gross Alpha/Beta	Gross Alpha	1.07E-14	1.04E-14	1.25E-14	μCi/mL			Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216395	GUNTHER SALT	06/03/20	Gross Alpha/Beta	Gross Beta	3.08E-14	1.88E-14	2.37E-14	μCi/mL	J	T04, T20	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216395	GUNTHER SALT	06/03/20	Gross Alpha/Beta	Gross Alpha	7.58E-15	7.35E-15	8.81E-15	μCi/mL	UJ	T06	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216396	GUNTHER SALT	06/03/20	Gross Alpha/Beta	Gross Beta	4.26E-14	2.60E-14	3.28E-14	μCi/mL	J	T04, T20	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216396	GUNTHER SALT	06/03/20	Gross Alpha/Beta	Gross Alpha	8.92E-15	9.66E-15	1.22E-14	μCi/mL	UJ	T06	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216397	GUNTHER SALT	06/04/20	Gross Alpha/Beta	Gross Alpha	9.00E-15	1.12E-14	1.49E-14	μCi/mL	UJ	T04, T05	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216397	GUNTHER SALT	06/04/20	Gross Alpha/Beta	Gross Beta	2.93E-14	2.97E-14	4.00E-14	μCi/mL	UJ	T04, T05	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216398	GUNTHER SALT	06/15/20	Gross Alpha/Beta	Gross Beta	3.37E-14	2.01E-14	2.53E-14	μCi/mL	=		Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216398	GUNTHER SALT	06/15/20	Gross Alpha/Beta	Gross Alpha	3.30E-15	6.19E-15	9.40E-15	μCi/mL	UJ	T04, T05	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216399	GUNTHER SALT	06/17/20	Gross Alpha/Beta	Gross Alpha	1.21E-15	5.94E-15	1.28E-14	μCi/mL	J	T04, T20	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216399	GUNTHER SALT	06/17/20	Gross Alpha/Beta	Gross Beta	2.50E-14	2.08E-14	3.01E-14	μCi/mL	J	T04, T20	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216399	GUNTHER SALT	06/17/20	Gross Alpha/Beta	Gross Beta	3.57E-14	2.18E-14	3.01E-14	μCi/mL	J	T04, T20	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216399	GUNTHER SALT	06/17/20	Gross Alpha/Beta	Gross Alpha	1.21E-15	5.94E-15	1.28E-14	μCi/mL	=		Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216400	GUNTHER SALT	06/18/20	Gross Alpha/Beta	Gross Beta	3.81E-14	2.23E-14	3.05E-14	μCi/mL	J	T04, T20	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216400	GUNTHER SALT	06/18/20	Gross Alpha/Beta	Gross Alpha	-1.71E-15	4.34E-15	1.29E-14	μCi/mL	UJ	T06	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216401	GUNTHER SALT	06/22/20	Gross Alpha/Beta	Gross Alpha	9.75E-15	9.13E-15	1.26E-14	μCi/mL			Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216401	GUNTHER SALT	06/22/20	Gross Alpha/Beta	Gross Beta	2.08E-14	2.01E-14	2.96E-14	μCi/mL			Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216402	GUNTHER SALT	06/23/20	Gross Alpha/Beta	Gross Beta	4.45E-14	2.20E-14	2.89E-14	μCi/mL	UJ	T06	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216402	GUNTHER SALT	06/23/20	Gross Alpha/Beta	Gross Alpha	1.09E-14	9.36E-15	1.23E-14	μCi/mL	UJ	T06	Kiesel/Gunther Salt (General Area)-Perimeter Air
SLD216403	GUNTHER SALT	06/24/20	Gross Alpha/Beta	Gross Alpha	2.23E-14	1.25E-14	1.24E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216403	GUNTHER SALT	06/24/20	Gross Alpha/Beta	Gross Beta	3.37E-14	2.11E-14	2.93E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216404	GUNTHER SALT	06/25/20	Gross Alpha/Beta	Gross Alpha	1.40E-14	1.04E-14	1.26E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216404	GUNTHER SALT	06/25/20	Gross Alpha/Beta	Gross Beta	4.65E-14	2.25E-14	2.96E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216405	GUNTHER SALT	06/29/20	Gross Alpha/Beta	Gross Alpha	1.25E-14	9.88E-15	1.24E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216405	GUNTHER SALT	06/29/20	Gross Alpha/Beta	Gross Beta	1.68E-14	1.95E-14	2.93E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216406	GUNTHER SALT	07/02/20	Gross Alpha/Beta	Gross Alpha	7.61E-15	9.62E-15	1.37E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216406	GUNTHER SALT	07/02/20	Gross Alpha/Beta	Gross Beta	1.15E-14	1.90E-14	2.67E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216406	GUNTHER SALT	07/02/20	Gross Alpha/Beta	Gross Alpha	4.23E-15	8.34E-15	1.37E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216406	GUNTHER SALT	07/02/20	Gross Alpha/Beta	Gross Beta	1.36E-14	1.92E-14	2.67E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216408	GUNTHER SALT	07/27/20	Gross Alpha/Beta	Gross Alpha	2.24E-15	7.94E-15	1.21E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216408	GUNTHER SALT	07/27/20	Gross Alpha/Beta	Gross Beta	1.02E-14	1.48E-14	2.36E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216408	GUNTHER SALT	07/27/20	Gross Alpha/Beta	Gross Alpha	6.71E-15	9.48E-15	1.21E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216408	GUNTHER SALT	07/27/20	Gross Alpha/Beta	Gross Beta	1.60E-14	1.56E-14	2.36E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216409	GUNTHER SALT	07/28/20	Gross Alpha/Beta	Gross Alpha	1.94E-15	6.88E-15	1.05E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216409	GUNTHER SALT	07/28/20	Gross Alpha/Beta	Gross Beta	1.80E-14	1.40E-14	2.04E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216410	GUNTHER SALT	07/29/20	Gross Alpha/Beta	Gross Alpha	8.40E-16	8.28E-15	1.36E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD216410	GUNTHER SALT	07/29/20	Gross Alpha/Beta	Gross Beta	7.13E-15	1.61E-14	2.65E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216411	GUNTHER SALT	07/30/20	Gross Alpha/Beta	Gross Alpha	-8.93E-16	8.04E-15	1.45E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216411	GUNTHER SALT	07/30/20	Gross Alpha/Beta	Gross Beta	1.68E-14	1.83E-14	2.82E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216412	GUNTHER SALT	08/04/20	Gross Alpha/Beta	Gross Beta	2.79E-14	1.89E-14	2.67E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216412	GUNTHER SALT	08/04/20	Gross Alpha/Beta	Gross Alpha	5.92E-15	1.02E-14	1.37E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216413	GUNTHER SALT	08/05/20	Gross Alpha/Beta	Gross Beta	2.99E-14	1.67E-14	2.25E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216413	GUNTHER SALT	08/05/20	Gross Alpha/Beta	Gross Alpha	7.83E-15	9.50E-15	1.16E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216414	GUNTHER SALT	08/06/20	Gross Alpha/Beta	Gross Alpha	8.34E-16	8.22E-15	1.36E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216414	GUNTHER SALT	08/06/20	Gross Alpha/Beta	Gross Beta	2.00E-14	1.77E-14	2.63E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216415	GUNTHER SALT	08/10/20	Gross Alpha/Beta	Gross Alpha	1.34E-14	1.19E-14	1.28E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216415	GUNTHER SALT	08/10/20	Gross Alpha/Beta	Gross Beta	3.41E-14	1.86E-14	2.49E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216416	GUNTHER SALT	08/11/20	Gross Alpha/Beta	Gross Alpha	1.01E-14	1.08E-14	1.26E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216416	GUNTHER SALT	08/11/20	Gross Alpha/Beta	Gross Beta	1.97E-14	1.66E-14	2.46E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216417	GUNTHER SALT	08/12/20	Gross Alpha/Beta	Gross Alpha	8.34E-16	8.22E-15	1.36E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216417	GUNTHER SALT	08/12/20	Gross Alpha/Beta	Gross Beta	1.89E-14	1.75E-14	2.63E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216418	GUNTHER SALT	08/17/20	Gross Alpha/Beta	Gross Alpha	1.60E-14	1.31E-14	1.36E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216418	GUNTHER SALT	08/17/20	Gross Alpha/Beta	Gross Beta	3.64E-14	1.98E-14	2.65E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216419	GUNTHER SALT	08/24/20	Gross Alpha/Beta	Gross Beta	6.19E-14	2.31E-14	2.72E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216419	GUNTHER SALT	08/24/20	Gross Alpha/Beta	Gross Alpha	9.49E-15	1.15E-14	1.40E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216420	GUNTHER SALT	08/25/20	Gross Alpha/Beta	Gross Beta	4.95E-14	2.10E-14	2.60E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216420	GUNTHER SALT	08/25/20	Gross Alpha/Beta	Gross Alpha	2.47E-15	8.76E-15	1.34E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216421	GUNTHER SALT	08/26/20	Gross Alpha/Beta	Gross Beta	2.62E-14	1.77E-14	2.50E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216421	GUNTHER SALT	08/26/20	Gross Alpha/Beta	Gross Alpha	2.38E-15	8.43E-15	1.29E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216422	GUNTHER SALT	09/01/20	Gross Alpha/Beta	Gross Alpha	1.43E-14	2.01E-14	2.57E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216422	GUNTHER SALT	09/01/20	Gross Alpha/Beta	Gross Beta	2.37E-14	3.17E-14	5.01E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216423	GUNTHER SALT	09/10/20	Gross Alpha/Beta	Gross Beta	4.85E-14	1.67E-14	1.90E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216423	GUNTHER SALT	09/10/20	Gross Alpha/Beta	Gross Alpha	1.80E-15	6.39E-15	9.76E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216424	GUNTHER SALT	09/14/20	Gross Alpha/Beta	Gross Beta	4.13E-14	1.54E-14	1.82E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216424	GUNTHER SALT	09/14/20	Gross Alpha/Beta	Gross Alpha	5.76E-16	5.68E-15	9.36E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216425	GUNTHER SALT	09/15/20	Gross Alpha/Beta	Gross Beta	4.95E-14	1.70E-14	1.93E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216425	GUNTHER SALT	09/15/20	Gross Alpha/Beta	Gross Alpha	5.51E-15	7.79E-15	9.95E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216426	GUNTHER SALT	09/09/20	Gross Alpha/Beta	Gross Beta	4.63E-14	1.69E-14	1.84E-14	μCi/mL	=	100	Gunther Salt (General Area)-Perimeter Air
SLD216426	GUNTHER SALT	09/09/20	Gross Alpha/Beta	Gross Alpha	6.33E-15	6.41E-15	8.63E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216426	GUNTHER SALT	09/09/20	Gross Alpha/Beta	Gross Beta	4.41E-14	1.66E-14	1.99E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216426	GUNTHER SALT	09/09/20	Gross Alpha/Beta	Gross Alpha	6.01E-16	5.21E-15	1.10E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216427	GUNTHER SALT	09/02/20	Gross Alpha/Beta	Gross Beta	2.83E-14	1.51E-14	2.03E-14	μCi/mL	=	10.,100	Gunther Salt (General Area)-Perimeter Air
SLD216427	GUNTHER SALT	09/02/20	Gross Alpha/Beta	Gross Alpha	6.12E-16	5.31E-15	1.12E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216428	GUNTHER SALT	09/03/20	Gross Alpha/Beta	Gross Beta	3.79E-14	1.60E-14	1.99E-14	μCi/mL	=	100	Gunther Salt (General Area)-Perimeter Air
SLD216428	GUNTHER SALT	09/03/20	Gross Alpha/Beta	Gross Alpha	1.02E-14	8.60E-15	1.10E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216429	GUNTHER SALT	09/08/20	Gross Alpha/Beta	Gross Beta	4.15E-14	1.55E-14	1.85E-14	μCi/mL	=	100	Gunther Salt (General Area)-Perimeter Air
SLD216429	GUNTHER SALT	09/08/20	Gross Alpha/Beta	Gross Alpha	7.23E-15	7.29E-15	1.03E 11	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216430	GUNTHER SALT	09/16/20	Gross Alpha/Beta	Gross Beta	6.19E-14	1.85E-14	1.99E-14	μCi/mL	=	100	Gunther Salt (General Area)-Perimeter Air
SLD216430	GUNTHER SALT GUNTHER SALT	09/16/20	Gross Alpha/Beta	Gross Alpha	9.01E-15	8.25E-15	1.10E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216431	GUNTHER SALT	09/17/20	Gross Alpha/Beta	Gross Beta	8.28E-14	2.04E-14	1.10E-14 1.98E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216431	GUNTHER SALT	09/17/20	Gross Alpha/Beta	Gross Alpha	8.93E-15	8.17E-15	1.09E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216431 SLD216432	GUNTHER SALT	09/11/20	Gross Alpha/Beta	Gross Beta	6.33E-14	1.80E-14	1.09E-14 1.90E-14	μCi/mL	I	T04, T20	Gunther Salt (General Area)-Perimeter Air
			•						III		, , , , , , , , , , , , , , , , , , , ,
SLD216432	GUNTHER SALT	09/21/20	Gross Alpha/Beta	Gross Alpha	5.71E-16	4.95E-15	1.04E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

SLD216433 SLD216434	GUNTHER SALT	00/00/00		Analyte Name	Result	Error	DL	Units	VQ	Reason Code	Sampling Event Name
SLD216434		09/22/20	Gross Alpha/Beta	Gross Beta	4.20E-14	1.55E-14	1.84E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	09/22/20	Gross Alpha/Beta	Gross Alpha	4.98E-15	6.54E-15	1.01E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216434	GUNTHER SALT	09/23/20	Gross Alpha/Beta	Gross Beta	3.67E-14	1.52E-14	1.90E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	09/23/20	Gross Alpha/Beta	Gross Alpha	-2.86E-15	2.99E-15	1.04E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216435	GUNTHER SALT	09/24/20	Gross Alpha/Beta	Gross Beta	3.64E-14	1.51E-14	1.88E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216435	GUNTHER SALT	09/24/20	Gross Alpha/Beta	Gross Alpha	5.09E-15	6.69E-15	1.03E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216436	GUNTHER SALT	09/28/20	Gross Alpha/Beta	Gross Alpha	5.63E-16	4.89E-15	1.03E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216436	GUNTHER SALT	09/28/20	Gross Alpha/Beta	Gross Beta	1.01E-14	1.20E-14	1.87E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216437	GUNTHER SALT	09/29/20	Gross Alpha/Beta	Gross Beta	1.99E-14	1.30E-14	1.84E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216437	GUNTHER SALT	09/29/20	Gross Alpha/Beta	Gross Alpha	6.09E-15	6.91E-15	1.01E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216438	GUNTHER SALT	09/30/20	Gross Alpha/Beta	Gross Beta	2.39E-14	1.40E-14	1.93E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216438	GUNTHER SALT	09/30/20	Gross Alpha/Beta	Gross Alpha	-5.82E-16	4.48E-15	1.06E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216439	GUNTHER SALT	10/01/20	Gross Alpha/Beta	Gross Alpha	-6.35E-16	6.07E-15	1.18E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216439	GUNTHER SALT	10/01/20	Gross Alpha/Beta	Gross Beta	2.02E-14	1.66E-14	2.29E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216439	GUNTHER SALT	10/01/20	Gross Alpha/Beta	Gross Alpha	-1.72E-15	5.67E-15	1.18E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216439	GUNTHER SALT	10/01/20	Gross Alpha/Beta	Gross Beta	1.44E-14	1.61E-14	2.29E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/05/20	Gross Alpha/Beta	Gross Alpha	7.08E-15	8.49E-15	1.19E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/05/20	Gross Alpha/Beta	Gross Beta	1.39E-14	1.62E-14	2.32E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/06/20	Gross Alpha/Beta	Gross Beta	5.28E-14	2.00E-14	2.35E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/06/20	Gross Alpha/Beta	Gross Alpha	6.06E-15	8.31E-15	1.21E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/07/20	Gross Alpha/Beta	Gross Beta	3.49E-14	1.80E-14	2.30E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/07/20	Gross Alpha/Beta	Gross Alpha	4.83E-15	7.82E-15	1.18E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/08/20	Gross Alpha/Beta	Gross Alpha	1.24E-14	9.68E-15	1.17E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/08/20	Gross Alpha/Beta	Gross Beta	4.18E-14	1.85E-14	2.28E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/12/20	Gross Alpha/Beta	Gross Alpha	7.95E-15	1.09E-14	1.59E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/12/20	Gross Alpha/Beta	Gross Beta	1.95E-14	2.17E-14	3.09E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/13/20	Gross Alpha/Beta	Gross Alpha	-8.18E-16	7.82E-15	1.51E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/13/20	Gross Alpha/Beta	Gross Beta	1.39E-14	2.03E-14	2.95E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/14/20	Gross Alpha/Beta	Gross Beta	2.52E-14	1.70E-14	2.28E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/14/20	Gross Alpha/Beta	Gross Alpha	1.02E-14	9.16E-15	1.17E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/15/20	Gross Alpha/Beta	Gross Beta	2.87E-14	1.77E-14	2.33E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/15/20	Gross Alpha/Beta	Gross Alpha	-6.46E-16	6.18E-15	1.20E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/19/20	Gross Alpha/Beta	Gross Alpha	2.84E-15	7.72E-15	1.27E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/19/20	Gross Alpha/Beta	Gross Beta	1.56E-14	1.74E-14	2.47E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/20/20	Gross Alpha/Beta	Gross Alpha	-3.89E-15	7.23E-15	1.62E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/20/20	Gross Alpha/Beta	Gross Beta	1.69E-14	2.19E-14	3.16E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/21/20	Gross Alpha/Beta	Gross Beta	4.30E-14	1.99E-14	2.47E-14	μCi/mL	=	100	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/21/20	Gross Alpha/Beta	Gross Alpha	2.84E-15	7.72E-15	1.27E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/22/20	Gross Alpha/Beta	Gross Beta	2.37E-14	1.73E-14	2.34E-14	μCi/mL	=	100	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/22/20	Gross Alpha/Beta	Gross Alpha	4.64E-16	6.59E-15	1.20E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/26/20	Gross Alpha/Beta	Gross Beta	4.17E-14	2.05E-14	2.58E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/26/20	Gross Alpha/Beta	Gross Alpha	4.20E-15	8.43E-15	1.33E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/27/20	Gross Alpha/Beta	Gross Alpha	-6.86E-16	6.56E-15	1.27E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/27/20	Gross Alpha/Beta	Gross Beta	5.42E-15	1.64E-14	2.47E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/28/20	Gross Alpha/Beta	Gross Beta	3.12E-14	2.28E-14	3.09E-14	μCi/mL		100	Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/28/20	Gross Alpha/Beta	Gross Alpha	6.49E-15	1.05E-14	1.59E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
	GUNTHER SALT	10/29/20	Gross Alpha/Beta	Gross Beta	8.25E-14	2.61E-14	2.90E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD216455	GUNTHER SALT	10/29/20	Gross Alpha/Beta	Gross Alpha	7.47E-15	1.03E-14	1.49E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216456	GUNTHER SALT	11/03/20	Gross Alpha/Beta	Gross Beta	3.79E-14	1.80E-14	2.26E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216456	GUNTHER SALT	11/03/20	Gross Alpha/Beta	Gross Alpha	-6.27E-16	5.99E-15	1.16E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216457	GUNTHER SALT	11/04/20	Gross Alpha/Beta	Gross Beta	2.59E-14	1.71E-14	2.28E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216457	GUNTHER SALT	11/04/20	Gross Alpha/Beta	Gross Alpha	2.62E-15	7.12E-15	1.17E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216458	GUNTHER SALT	11/05/20	Gross Alpha/Beta	Gross Beta	3.79E-14	2.03E-14	2.61E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216458	GUNTHER SALT	11/05/20	Gross Alpha/Beta	Gross Alpha	-1.97E-15	6.46E-15	1.34E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216459	GUNTHER SALT	11/02/20	Gross Alpha/Beta	Gross Beta	3.65E-14	1.51E-14	1.82E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216459	GUNTHER SALT	11/02/20	Gross Alpha/Beta	Gross Alpha	1.45E-15	4.75E-15	9.75E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216459	GUNTHER SALT	11/02/20	Gross Alpha/Beta	Gross Beta	4.03E-14	1.55E-14	1.82E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216459	GUNTHER SALT	11/02/20	Gross Alpha/Beta	Gross Alpha	8.43E-15	7.44E-15	9.75E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216460	GUNTHER SALT	11/09/20	Gross Alpha/Beta	Gross Alpha	2.88E-16	4.11E-15	9.66E-15	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216460	GUNTHER SALT	11/09/20	Gross Alpha/Beta	Gross Beta	1.17E-14	1.21E-14	1.80E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216461	GUNTHER SALT	11/10/20	Gross Alpha/Beta	Gross Alpha	2.88E-15	5.83E-15	1.07E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216461	GUNTHER SALT	11/10/20	Gross Alpha/Beta	Gross Beta	1.63E-14	1.38E-14	2.00E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216462	GUNTHER SALT	11/11/20	Gross Alpha/Beta	Gross Beta	2.52E-14	1.77E-14	2.47E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216462	GUNTHER SALT	11/11/20	Gross Alpha/Beta	Gross Alpha	1.31E-14	1.06E-14	1.33E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216463	GUNTHER SALT	11/16/20	Gross Alpha/Beta	Gross Alpha	5.53E-15	8.47E-15	1.43E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216463	GUNTHER SALT	11/16/20	Gross Alpha/Beta	Gross Beta	2.49E-14	1.88E-14	2.66E-14	μCi/mL			Gunther Salt (General Area)-Perimeter Air
SLD216464	GUNTHER SALT	11/17/20	Gross Alpha/Beta	Gross Alpha	7.66E-15	7.44E-15	1.03E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216464	GUNTHER SALT	11/17/20	Gross Alpha/Beta	Gross Beta	1.63E-14	1.33E-14	1.91E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216465	GUNTHER SALT	11/18/20	Gross Alpha/Beta	Gross Beta	3.88E-14	2.08E-14	2.71E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216465	GUNTHER SALT	11/18/20	Gross Alpha/Beta	Gross Alpha	3.91E-15	7.91E-15	1.46E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216220	P6WH LOADOUT	01/02/20	Gross Alpha/Beta	Gross Alpha	1.16E-14	9.36E-15	1.09E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216220	P6WH LOADOUT	01/02/20	Gross Alpha/Beta	Gross Beta	3.84E-14	1.65E-14	2.22E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216220	P6WH LOADOUT	01/02/20	Gross Alpha/Beta	Gross Alpha	1.28E-14	9.65E-15	1.09E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216220	P6WH LOADOUT	01/02/20	Gross Alpha/Beta	Gross Beta	4.14E-14	1.68E-14	2.22E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216221	P6WH LOADOUT	01/06/20	Gross Alpha/Beta	Gross Alpha	1.23E-15	6.19E-15	1.08E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216221	P6WH LOADOUT	01/06/20	Gross Alpha/Beta	Gross Beta	2.11E-14	1.46E-14	2.19E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216222	P6WH LOADOUT	01/06/20	Gross Alpha/Beta	Gross Alpha	1.19E-16	7.23E-15	1.36E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216222	P6WH LOADOUT	01/06/20	Gross Alpha/Beta	Gross Beta	1.82E-14	1.74E-14	2.76E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216223	P6WH LOADOUT	01/06/20	Gross Alpha/Beta	Gross Alpha	1.07E-16	6.47E-15	1.21E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216223	P6WH LOADOUT	01/06/20	Gross Alpha/Beta	Gross Beta	1.44E-15	1.39E-14	2.47E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216224	P6WH LOADOUT	01/07/20	Gross Alpha/Beta	Gross Alpha	-1.02E-15	5.18E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216224	P6WH LOADOUT	01/07/20	Gross Alpha/Beta	Gross Beta	1.92E-14	1.41E-14	2.15E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216225	P6WH LOADOUT	01/07/20	Gross Alpha/Beta	Gross Alpha	1.50E-15	7.53E-15	1.31E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216225	P6WH LOADOUT	01/07/20	Gross Alpha/Beta	Gross Beta	2.65E-14	1.78E-14	2.67E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216226	P6WH LOADOUT	01/07/20	Gross Alpha/Beta	Gross Beta	2.77E-14	1.67E-14	2.45E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216226	P6WH LOADOUT	01/07/20	Gross Alpha/Beta	Gross Alpha	6.47E-15	8.61E-15	1.21E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216227	P6WH LOADOUT	01/08/20	Gross Alpha/Beta	Gross Alpha	9.40E-17	5.73E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216227	P6WH LOADOUT	01/08/20	Gross Alpha/Beta	Gross Beta	1.22E-14	1.35E-14	2.18E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216228	P6WH LOADOUT	01/08/20	Gross Alpha/Beta	Gross Alpha	-2.67E-15	5.84E-15	1.32E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216228	P6WH LOADOUT	01/08/20	Gross Alpha/Beta	Gross Beta	1.77E-14	1.69E-14	2.68E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216229	P6WH LOADOUT	01/08/20	Gross Alpha/Beta	Gross Alpha	5.03E-15	7.95E-15	1.17E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216229	P6WH LOADOUT	01/08/20	Gross Alpha/Beta	Gross Beta	1.80E-14	1.53E-14	2.38E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216230	P6WH LOADOUT	01/09/20	Gross Alpha/Beta	Gross Beta	2.28E-14	1.45E-14	2.15E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216230	P6WH LOADOUT	01/09/20	Gross Alpha/Beta	Gross Alpha	-1.02E-15	5.18E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD216231	P6WH LOADOUT	01/09/20	Gross Alpha/Beta	Gross Alpha	1.47E-15	7.38E-15	1.29E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216231	P6WH LOADOUT	01/09/20	Gross Alpha/Beta	Gross Beta	1.20E-14	1.59E-14	2.62E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216232	P6WH LOADOUT	01/09/20	Gross Alpha/Beta	Gross Beta	3.23E-14	1.68E-14	2.38E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216232	P6WH LOADOUT	01/09/20	Gross Alpha/Beta	Gross Alpha	6.26E-15	8.33E-15	1.17E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216233	P6WH LOADOUT	01/13/20	Gross Alpha/Beta	Gross Beta	2.22E-14	1.45E-14	2.16E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216233	P6WH LOADOUT	01/13/20	Gross Alpha/Beta	Gross Alpha	9.30E-17	5.66E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216234	P6WH LOADOUT	01/13/20	Gross Alpha/Beta	Gross Alpha	5.03E-15	1.42E-14	2.69E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216234	P6WH LOADOUT	01/13/20	Gross Alpha/Beta	Gross Beta	5.56E-14	3.94E-14	5.82E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216234	P6WH LOADOUT	01/13/20	Gross Alpha/Beta	Gross Alpha	5.03E-15	1.42E-14	2.69E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216234	P6WH LOADOUT	01/13/20	Gross Alpha/Beta	Gross Beta	3.90E-15	3.21E-14	5.82E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216235	P6WH LOADOUT	01/13/20	Gross Alpha/Beta	Gross Beta	3.49E-14	1.49E-14	1.89E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216235	P6WH LOADOUT	01/13/20	Gross Alpha/Beta	Gross Alpha	5.32E-15	6.28E-15	8.75E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216236	P6WH LOADOUT	01/14/20	Gross Alpha/Beta	Gross Alpha	7.63E-15	6.44E-15	7.42E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216236	P6WH LOADOUT	01/14/20	Gross Alpha/Beta	Gross Beta	3.03E-14	1.27E-14	1.61E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216237	P6WH LOADOUT	01/14/20	Gross Alpha/Beta	Gross Beta	5.31E-14	1.65E-14	1.81E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216237	P6WH LOADOUT	01/14/20	Gross Alpha/Beta	Gross Alpha	5.07E-15	5.99E-15	8.34E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216238	P6WH LOADOUT	01/15/20	Gross Alpha/Beta	Gross Alpha	8.74E-15	6.83E-15	7.48E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216238	P6WH LOADOUT	01/15/20	Gross Alpha/Beta	Gross Beta	1.55E-14	1.10E-14	1.62E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216239	P6WH LOADOUT	01/15/20	Gross Alpha/Beta	Gross Beta	4.69E-14	1.56E-14	1.77E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216239	P6WH LOADOUT	01/15/20	Gross Alpha/Beta	Gross Alpha	4.98E-15	5.88E-15	8.19E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216240	P6WH LOADOUT	01/16/20	Gross Alpha/Beta	Gross Beta	6.18E-14	1.63E-14	1.63E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216240	P6WH LOADOUT	01/16/20	Gross Alpha/Beta	Gross Alpha	4.58E-15	5.41E-15	7.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216241	P6WH LOADOUT	01/16/20	Gross Alpha/Beta	Gross Alpha	8.62E-15	7.28E-15	8.38E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216241	P6WH LOADOUT	01/16/20	Gross Alpha/Beta	Gross Beta	7.18E-14	1.85E-14	1.81E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216242	P6WH LOADOUT	01/21/20	Gross Alpha/Beta	Gross Alpha	8.50E-15	6.64E-15	7.27E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216242	P6WH LOADOUT	01/21/20	Gross Alpha/Beta	Gross Beta	2.43E-14	1.18E-14	1.57E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216243	P6WH LOADOUT	01/22/20	Gross Alpha/Beta	Gross Beta	3.92E-14	1.45E-14	1.61E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216243	P6WH LOADOUT	01/22/20	Gross Alpha/Beta	Gross Alpha	2.18E-15	4.52E-15	8.23E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216243	P6WH LOADOUT	01/22/20	Gross Alpha/Beta	Gross Beta	3.92E-14	1.45E-14	1.61E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216243	P6WH LOADOUT	01/22/20	Gross Alpha/Beta	Gross Alpha	5.45E-15	5.90E-15	8.23E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216244	P6WH LOADOUT	01/23/20	Gross Alpha/Beta	Gross Beta	1.99E-14	1.30E-14	1.73E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216244	P6WH LOADOUT	01/23/20	Gross Alpha/Beta	Gross Alpha	2.34E-15	4.86E-15	8.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216245	P6WH LOADOUT	01/23/20	Gross Alpha/Beta	Gross Beta	3.64E-14	1.58E-14	1.87E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216245	P6WH LOADOUT	01/23/20	Gross Alpha/Beta	Gross Alpha	0	3.83E-15	9.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216246	P6WH LOADOUT	01/27/20	Gross Alpha/Beta	Gross Alpha	-1.16E-15	2.64E-15	8.75E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216246	P6WH LOADOUT	01/27/20	Gross Alpha/Beta	Gross Beta	1.67E-14	1.24E-14	1.71E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216247	P6WH LOADOUT	01/27/20	Gross Alpha/Beta	Gross Beta	3.11E-14	1.35E-14	1.60E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216247	P6WH LOADOUT	01/27/20	Gross Alpha/Beta	Gross Alpha	0	3.27E-15	8.16E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216248	P6WH LOADOUT	01/28/20	Gross Alpha/Beta	Gross Alpha	3.27E-15	5.02E-15	8.23E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216248	P6WH LOADOUT	01/28/20	Gross Alpha/Beta	Gross Beta	1.07E-14	1.10E-14	1.61E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216249	P6WH LOADOUT	01/29/20	Gross Alpha/Beta	Gross Alpha	1.10E-15	4.01E-15	8.33E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216249	P6WH LOADOUT	01/29/20	Gross Alpha/Beta	Gross Beta	1.01E-14	1.11E-14	1.63E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216250	P6WH LOADOUT	01/29/20	Gross Alpha/Beta	Gross Alpha	2.35E-15	4.88E-15	8.88E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216250	P6WH LOADOUT	01/29/20	Gross Alpha/Beta	Gross Beta	1.69E-14	1.26E-14	1.74E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216251	P6WH LOADOUT	01/30/20	Gross Alpha/Beta	Gross Beta	3.49E-14	1.49E-14	1.75E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216251	P6WH LOADOUT	01/30/20	Gross Alpha/Beta	Gross Alpha	1.19E-15	4.31E-15	8.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216252	P6WH LOADOUT	01/30/20	Gross Alpha/Beta	Gross Alpha	4.36E-15	5.48E-15	8.23E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

SEDITIONS PROWN LEADADUT 01-99-00 Gross Applies Gross Applies 1967-14 1167-14 1677-14 1677-14 1677-14 1794-705 Pleas (WWI LEADADUT Grossel Associated Asso	Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SED21625 PRWII LOADOUT 0,000-20 Gross Applath tas Gross Rept 4,000-41 1,796-14 1,796-14 1,706-14 1,706-14 1,706-14 1,706-14 1,706-14 1,706-14 1,706-14 1,706-14 1,706-14 1,706-14 1,706-14 1,706-14 1,706-14 1,706-15 1,706-14 1,70	SLD216252	P6WH LOADOUT		Gross Alpha/Beta	Gross Beta	1.50E-14	1.16E-14	1.61E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SED10554 POWIL DADOUT 0.903-70 Grow Applia-Bate Grows Belgy 7.096-15 6.082-15 3.905-15 global 7.1 Tex 755 Part OWIL DADOUT Grown Applia-Bate Grows Applia 7.096-15 6.082-15 3.905-15 global 7.1 Tex 755 Part OWIL DADOUT Grown Applia-Bate Grows Applia 7.096-15 7.446-15 3.456-15 global 7.1 Tex 755 Part OWIL DADOUT Grown Applia-Bate Grows Applia 7.096-15 7.446-15 7.456-15 global 7.1 Tex 755 Part OWIL DADOUT Grown Applia-Bate Grows Applia 7.096-15 7.446-15 7.456-15 global 7.1 Tex 755 Part OWIL DADOUT Grown Applia-Bate Grows Applia 7.096-15 7.446-15 7.456-15 global 7.1 Tex 755 Part OWIL DADOUT Grown Applia-Bate Grows Applia 7.096-15 7.45	SLD216253	P6WH LOADOUT	02/03/20	Gross Alpha/Beta	Gross Beta	4.11E-14	1.47E-14	1.60E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SIPPIONS POWH LOADOUT 20:07:20 Gress Aghin See Grew Apha SEC 1 Agricult Common Aghin See	SLD216253	P6WH LOADOUT	02/03/20	Gross Alpha/Beta	Gross Alpha	3.26E-15	5.00E-15	8.19E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SEDIOLOSIS POWILLOADOUT 029420 Gross Aplan Section Sec	SLD216254	P6WH LOADOUT	02/03/20	Gross Alpha/Beta	Gross Beta	4.40E-14	1.59E-14	1.75E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SIJ120355 POWILLOADOUT 020429 Gross Alpha/Bet Gross Alpha SIJ021655 POWILLOADOUT 020429 Gross Alpha/Bet Gross Alpha SIJ021655 POWILLOADOUT 020429 Gross Alpha/Bet Gross Alpha SIJ021656 POWILLOADOUT 020429 Gross Alpha/Bet Gross Alpha SIJ021657 Gross Alpha/Bet Gross Alpha/Bet Gross Alpha SIJ021657 Gross Alpha/Bet Gross	SLD216254	P6WH LOADOUT	02/03/20	Gross Alpha/Beta	Gross Alpha	7.09E-15	6.82E-15	8.92E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD2 0555 PNMI I DANDUT 0209-20 Gross AphaBera Gross Bern 2-2011-14 1-201-14 2-201-14 1-201-	SLD216255	P6WH LOADOUT	02/04/20	Gross Alpha/Beta	Gross Alpha	8.56E-15	7.44E-15	9.48E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SED216255 POWH I I DADOUT 0200420 Gross Aphin-State Gross Rept 2361-14 1-561-15 62004. J Tot Plant OWH I LOADOUT General Assol-Prictance Air SED216256 POWH I LOADOUT 0200420 Gross Aphin-State Gross Aphin 4681-15 5.7581-15 8.7181-15 gCval. U Tot Plant OWH I LOADOUT General Assol-Prictance Air SED216257 PoWH I LOADOUT 0200520 Gross Aphin-State Gross Aphin 4681-15 5.7581-15 8.7181-15 gCval. U Tot Plant OWH I LOADOUT General Assol-Prictance Air SED216257 PoWH I LOADOUT 0200520 Gross Aphin-State Gross Beha 1.481-14 2.021-14 3.201-14 gCval. U Tot Plant OWH I LOADOUT General Assol-Prictance Air SED216257 PoWH I LOADOUT 0200520 Gross Aphin-State Gross Beha 3.8181-15 3.2181-14 gCval. U Tot Plant OWH I LOADOUT General Assol-Prictance Air SED216257 PoWH I LOADOUT 0200520 Gross Aphin-State Gross Beha 3.8181-15 3.2181-14 gCval. U Tot Plant OWH I LOADOUT General Assol-Prictance Air SED216257 PoWH I LOADOUT 0200520 Gross Aphin-State	SLD216255	P6WH LOADOUT	02/04/20	Gross Alpha/Beta	Gross Beta	2.03E-14	1.63E-14	2.45E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216256 POWILLOADOUT 020420 Gross Aphu-Blast Gross Alpha 4.848-15 5.758-15 2.578-15 2.578-15 2.578-15 3.578-15 3.788-15 7.678-16 3.788-15 3.788-	SLD216255	P6WH LOADOUT	02/04/20	Gross Alpha/Beta	Gross Beta	3.41E-14	1.76E-14	2.45E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SED1216256 POWIH LOADOUT 020520 Gross Alpha-Bata Gross Alpha 4.68F-15 5.75F-15 8.75F-15 1.25F-14 1.05F-14 1.05	SLD216255	P6WH LOADOUT	02/04/20	Gross Alpha/Beta	Gross Alpha	5.10E-15	6.26E-15	9.48E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD121637 PRWH LOADOUT 02:05:20 Gross Alpha Reta Gross Alpha 5:201.15 7:671.25 12:15.14 0.Cmt. U T00 Plant 6WH LOADOUT General Area-Perimeter Ar SLD121635 PRWH LOADOUT 02:05:20 Gross Alpha Reta Gross Beta 3:201.41 2:431.41 0.Cmt. U T00 Plant 6WH LOADOUT General Area-Perimeter Ar SLD121635 PRWH LOADOUT 02:05:20 Gross Alpha Reta Gross Beta 3:201.41 2:431.41 0.Cmt. U T00 Plant 6WH LOADOUT General Area-Perimeter Ar SLD121635 PRWH LOADOUT 02:05:20 Gross Alpha Reta Gross Alpha 0.Cmt. U T00 Plant 6WH LOADOUT General Area-Perimeter Ar SLD121635 PRWH LOADOUT 02:06:20 Gross Alpha Reta Gross Alpha 0.Cmt. U T00 Plant 6WH LOADOUT General Area-Perimeter Ar SLD121635 PRWH LOADOUT 02:06:20 Gross Alpha Reta Gross Alpha 0.Cmt. U T00 Plant 6WH LOADOUT General Area-Perimeter Ar SLD121635 PRWH LOADOUT 02:10:20 Gross Alpha Reta Gross Alpha 0.Cmt. U T00 Plant 6WH LOADOUT (General Area-Perimeter Ar SLD121636 PRWH LOADOUT 02:10:20 Gross Alpha Reta Gross Alpha 0.Cmt. U T00 Plant 6WH LOADOUT (General Area-Perimeter Ar SLD121636 PRWH LOADOUT 02:10:20 Gross Alpha Reta Gross Alpha 0.Cmt. U T00 Plant 6WH LOADOUT (General Area-Perimeter Ar SLD121636 PRWH LOADOUT 02:10:20 Gross Alpha Reta Gross Alpha 0.Cmt. U T00 Plant 6WH LOADOUT (General Area-Perimeter Ar SLD121636 PRWH LOADOUT 02:10:20 Gross Alpha Reta Gross Alpha 0.Cmt. U T00 Plant 6WH LOADOUT (General Area-Perimeter Ar SLD121636 PRWH LOADOUT 02:10:20 Gross Alpha Reta Gross Alpha 0.Cmt. U T00 Plant 6WH LOADOUT (General Area-Perimeter Ar SLD121636 PRWH LOADOUT 02:10:20 Gross Alpha Reta Gross Alpha 0.Cmt. U T00 Plant 6WH LOADOUT (General Area-Perimeter Ar SLD121636 PRWH LOADOUT 0.Cmt. 0.Cm	SLD216256	P6WH LOADOUT	02/04/20	Gross Alpha/Beta	Gross Beta	2.36E-14	1.54E-14	2.25E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD21637 P6WH LOADOUT 0.20520 Gross Alpha Brea Gross Beta 1.46L14 2.20L1-14 2.20L1-14 0.5mL 1.0 Hz. 1.0	SLD216256	P6WH LOADOUT	02/04/20		Gross Alpha	4.68E-15	5.75E-15	8.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SED-16288 P6WH I LOADOUT 020520 Gross AphaPelea Gross Ap	SLD216257	P6WH LOADOUT	02/05/20	Gross Alpha/Beta	Gross Alpha	5.20E-15	7.67E-15	1.25E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SED16258 PrOWIT LOADOUT 02/05/20	SLD216257	P6WH LOADOUT	02/05/20	Gross Alpha/Beta	Gross Beta	1.46E-14	2.02E-14	3.23E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SID10528 P6WH I LOADOUT 02/05/20 Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta Gross Beta 72/7E.15 1.50E.14 2.46E.14 1.07mL J T06 Plant 6WH I LOADOUT (General Area)-Perineter Air SID105/20 P6WH I LOADOUT (Gross Alpha/Beta Gross Beta 72/7E.15 1.50E.14 2.46E.14 1.07mL J T04, T20 Plant 6WH I LOADOUT (General Area)-Perineter Air SID105/20 P6WH I LOADOUT (Gross Alpha/Beta Gross Beta 72/7E.15 1.50E.14 2.46E.14 1.07mL J T04, T20 Plant 6WH I LOADOUT (General Area)-Perineter Air SID105/20 P6WH I LOADOUT (General Area)-Perineter Air SID105/20 P6	SLD216258	P6WH LOADOUT	02/05/20	•	Gross Beta	3.82E-14	2.43E-14	3.54E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SED16259 POWILLOADOUT 0210/20 Gross Alpha/Beta SED16260 PowILLOADOUT 0210/20 Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta SED16261 FowILLOADOUT 0210/20 Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta SED16261 FowILLOADOUT 0210/20 Gross Alpha/Beta Gross Alpha/Beta Gross Beta 2.8EC1-4 E. 2.8E	SLD216258	P6WH LOADOUT	02/05/20		Gross Alpha	-2.64E-15	3.84E-15	1.37E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SID12629 POWILLOADOUT 02/1020 Gross AlphaBela Gross Alpha 1,0555-14 3,2565-14 1,6665-14 2,6766 J. T04, T20 Plant GWH LOADOUT General Area) Perimeter Air SID12626 Powill LOADOUT 02/1020 Gross AlphaBela Gross Alpha 2,6555-14 1,6665-14 2,2765-14 2,6766 J. T04, T20 Plant GWH LOADOUT General Area) Perimeter Air SID12626 Powill LOADOUT 02/1020 Gross AlphaBela Gross Alpha 2,6555-14 2,2555-14 2,6766 J. T04, T20 Plant GWH LOADOUT General Area) Perimeter Air SID12626 Powill LOADOUT 02/1020 Gross AlphaBela Gross Alpha 2,6555-15 2,2455-14 2,	SLD216259	P6WH LOADOUT	02/06/20	<u> </u>	Gross Alpha	-6.77E-16	3.54E-15	9.52E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SID216260 POWH LOADOUT 02/10/20 Gross Alpha/Beta Gross Seta 2.85E-14 1.66E-14 1.66E-14 2.47E-14 0.67mL 1 1.704, T20 Plant GWH LOADOUT (General Area)-Perimeter Air SLD216261 PoWH LOADOUT 02/10/20 Gross Alpha/Beta Gross Beta 2.85E-15 2.22E-14 5.22E-14 0.67mL UJ T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD216261 PoWH LOADOUT 02/11/20 Gross Alpha/Beta Gross Beta 2.85E-15 2.24E-14 0.67mL UJ T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD216262 PoWH LOADOUT 02/11/20 Gross Alpha/Beta Gross Beta 2.85E-14 1.64E-14 2.44E-14 p.Cimi, UJ T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD216262 PoWH LOADOUT 02/11/20 Gross Alpha/Beta Gross Beta 2.85E-15 0.38E-15 0.68E-15 0.	SLD216259		02/06/20	•	Gross Beta	7.27E-15	1.50E-14	2.46E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216269 P6WH LOADOUT 02/10/20 Gross AlphaBeta Gross Beta 2.86E-14 2.37E-14 pC/smL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216261 P6WH LOADOUT 02/10/20 Gross AlphaBeta Gross Beta 3.14E-14 8.13E-14 1.35E-13 pC/smL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216262 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Beta 3.14E-14 8.13E-14 pC/smL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216262 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Alpha Beta 5.20E-15 5.36E-15 9.06E-15 pC/smL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216263 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Alpha Beta 5.20E-15 5.38E-15 9.06E-15 pC/smL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Alpha Beta Gross Alpha 4.24E-15 6.25E-15 1.28E-14 pC/smL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/11/20 Gross Alpha Beta Gross Alpha 4.2	SLD216260	P6WH LOADOUT	02/10/20		Gross Alpha	1.05E-14	7.88E-15	9.18E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216261 P6WH LOADOUT 02/10/20 Gross AlphaBeta Gross Alpha State 2.68E-15 8.14E-14 8.13E-14 1.35E-13 µc/cml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216262 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Reta 2.82F-14 L.64F-14 2.34F-14 µc/cml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216262 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Reta 2.82F-14 L.64F-14 2.34F-14 µc/cml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216263 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Alpha Beta 5.20E-15 6.38E-15 9.66E-15 µc/cml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216263 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Alpha Beta 1.83E-14 1.63E-14 2.90E-14 µc/cml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Beta 1.83E-14 1.63E-14 2.90E-14 µc/cml. U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Beta 2.80E-14 1.80E-14 2.63E-14 µc/cml. U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Beta 2.80E-14 1.80E-14 2.63E-14 µc/cml. U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Alpha Beta 4.24E-15 4.26E-14 µc/cml. U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Alpha Beta 4.24E-15 4.25E-14 µc/cml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Alpha Beta 4.24E-15 4.25E-14 µc/cml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/11/20 Gross AlphaBeta Gross Alpha Beta 4.24E-15 4.25E-14 µc/cml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267	SLD216260		02/10/20	•		2.86E-14	1.66E-14		•	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216262 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Beta 3.14E-14 8.13E-14 1.35E-13 µC/vmL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216262 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Alpha 5.26F-15 5.98F-15 9.06F-15 µC/vmL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216263 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Alpha 5.26F-15 6.38F-15 9.06F-15 µC/vmL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216263 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Beta 1.09E-14 8.14E-15 9.48E-15 QC/vmL U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Alpha/	SLD216261		02/10/20		Gross Alpha	2.65E-15	2.32E-14	5.22E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216262 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Relia 2.82E-14 1.64E-14 2.44E-15 9.06E-15 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216262 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Alpha 4.87E-15 5.98E-15 9.06E-15 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216263 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Alpha 1.83E-14 1.63E-14 2.50E-15 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 1.83E-14 1.63E-14 2.50E-14 pC/ml. U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.80E-14 1.70E-14 2.45E-14 pC/ml. U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.80E-14 1.70E-14 2.45E-14 pC/ml. U T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 2.48E-15 6.25E-15 1.02E-14 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 2.24E-15 6.25E-15 1.02E-14 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.24E-15 6.25E-15 1.02E-14 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.36E-14 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.36E-14 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.36E-14 pC/ml. U T06 Plant 6WH LOADOUT (General Area	SLD216261		02/10/20	•	Gross Beta	3.14E-14	8.13E-14		μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216262 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Alpha 4.87E-15 5.98E-15 9.66E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216263 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Beta 1.83E-14 1.63E-14 2.50E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 1.09E-14 8.14E-15 9.48E-15 µC/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.68E-14 1.80E-14 2.63E-14 µC/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.68E-14 1.80E-14 2.63E-14 µC/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 4.24E-15 6.23E-15 1.02E-14 µC/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 4.24E-15 6.23E-15 1.02E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 4.24E-15 6.23E-15 1.02E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.17E-14 3.31E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.17E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 µC/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LO				•						J		` /
SLD216263 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Alpha 5.20E-15 6.38E-15 9.66E-15 µCymL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 1.88E-14 1.63E-14 2.50E-14 µCymL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.80E-14 1.70E-14 2.45E-14 µCymL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.80E-14 1.70E-14 2.45E-14 µCymL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.80E-14 1.80E-14 2.63E-14 µCymL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 4.24E-15 6.25E-15 1.02E-14 µCymL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.47E-14 3.31E-14 µCymL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.47E-14 3.31E-14 µCymL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.27E-14 3.31E-14 µCymL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Alpha 1.68E-15 2.44E-15 8.77E-15 µCymL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.28E-15 6.03E-15 9.14E-15 µCymL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.57E-14 2.25E-14 µCymL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD	SLD216262		02/11/20	•	Gross Alpha	4.87E-15	ļ			UJ		· · · · · · · · · · · · · · · · · · ·
SLD216263 P6WH LOADOUT 02/11/20 Gross Alpha/Beta Gross Beta 1.83E-14 1.63E-14 2.50E-14 µC/mL U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216264 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 1.70E-14 2.45E-14 µC/mL U T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.68E-14 1.70E-14 2.45E-14 µC/mL U T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 2.24E-15 6.25E-15 1.02E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 2.24E-15 6.49E-15 1.28E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 2.24E-15 6.49E-15 1.28E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 2.24E-15 6.49E-15 1.28E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 2.48E-14 2.17E-14 3.31E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 3.06E-15 1.37E-14 2.25E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.25E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.78E-15 7.09E-15 1.02E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.78E-15 7.09E-15 1.02E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH	SLD216263		02/11/20	<u> </u>	 					UJ		` ′
SLD216264 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 1.09E-14 8.14E-15 9.48E-15 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.68E-14 1.80E-14 2.63E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.68E-14 1.80E-14 2.63E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 4.24E-15 6.25E-15 1.02E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.17E-14 3.31E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.17E-14 3.31E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 6.65E-15 2.44E-15 8.71E-15 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 6.65E-15 3.71E-14 2.25E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.25E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gr				•	 		ļ			UJ		` /
SLD216264 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.80E-14 1.70E-14 2.45E-14 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.80E-14 1.80E-14 2.65E-14 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 4.24E-15 6.25E-15 1.02E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 2.21E-15 6.49E-15 1.28E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.17E-14 3.31E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 6.65E-15 1.37E-14 2.25E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.36E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.36E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 9.14E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 9.14E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 1.53E-14 2.29E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.29E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216270 P6			02/12/20		-	1.09E-14			•	J	·	` /
SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.68E-14 1.80E-14 2.63E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 4.24E-15 6.25E-15 1.02E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 2.21E-15 6.49E-15 1.28E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.17E-14 3.31E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.17E-14 3.31E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.25E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.36E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 4.28E-15 6.03E-15 9.14E-15 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 4.28E-15 6.03E-15 9.14E-15 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 µC/mL U T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 µC/mL U T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 8.09E-15 8.06E-15 1.02E-14 µC/mL U T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 G				•					•	J	·	` /
SLD216265 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 4.24E-15 6.25E-15 1.02E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 2.21E-15 6.49E-15 1.28E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.17E-14 3.31E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 0.65E-15 1.37E-14 2.25E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 0.65E-15 1.37E-14 2.25E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.36E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 9.14E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.78E-15 7.09E-15 1.02E-14 µC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 µC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 8.09E-15 1.02E-14 µC/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.28E-15 1.45E-14 2.29E-14 µC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.28E-15 1.45E-14 2.29E-14 µC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta G						2.68E-14			•	J		` /
SLD216266 P6WH LOADOUT 02/12/20 Gross Alpha/Beta Gross Alpha 2.21E-15 6.49E-15 1.28E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 2.43E-14 2.17E-14 3.31E-14 µCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 6.65E-15 1.37E-14 2.25E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.36E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 9.14E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 9.14E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.78E-15 7.09E-15 1.02E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 µCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 2.22E-14 1.37E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross				•					•	UJ		` /
SLD216266 P6WH LOADOUT O2/12/20 Gross Alpha/Beta Gross Beta C.43E-14 C.17E-14 S.1B-15 µC/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT O2/13/20 Gross Alpha/Beta Gross Alpha -1.68E-15 C.44E-15 S.71E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT O2/13/20 Gross Alpha/Beta Gross Beta 6.65E-15 1.37E-14 C.25E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 C.36E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 9.14E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 0.02E-14 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 µC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 µC/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 µC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 µC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 µC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT O2/19/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.73E-14 1.75E-14 µC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT O2/19/20 Gross Alpha/B				•								· /
SLD216267 P6WH LOADOUT O2/13/20 Gross Alpha/Beta Gross Alpha -1.68E-15 2.44E-15 8.71E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216267 P6WH LOADOUT O2/13/20 Gross Alpha/Beta Gross Beta 6.65E-15 1.37E-14 2.25E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 9.14E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 9.14E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Alpha 4.78E-15 7.09E-15 1.02E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Alpha 4.78E-15 7.09E-15 1.02E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Alpha 8.09E-15 8.06E-15 1.02E-14 µCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 µCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 2.22E-14 1.72E-14 2.44E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT O2/19/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT O2/19/20 Gross Alpha/Beta Gross Alpha 2.44E-15 5.69E-15 9.55E-15 µCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT O2/19/20 Gross Alpha/Beta Gross Alpha 2.44E-15 5.69E-15 9.55E-15 µCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216271 P6W				•	_							`
SLD216267 P6WH LOADOUT 02/13/20 Gross Alpha/Beta Gross Beta 6.65E-15 1.37E-14 2.25E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.36E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.78E-15 7.09E-15 1.02E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 μCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 8.09E-15 8.06E-15 1.02E-14 μCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 μCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 μCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.29E-14 μCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 μCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 2.22E-14 1.37E-14 1.70E-14 μCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 2.22E-14 1.37E-14 1.70E-14 μCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55E-14 1.55E-14 1.67E-14 μCi/mL UJ T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216272 P6WH LOADOUT 02									-			` /
SLD216268 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.67E-14 2.36E-14 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216268 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 9.14E-15 μC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 μC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 μC/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 μC/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 μC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT O2/18/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 μC/mL UJ T06 Plant 6WH LOADOUT General Area)-Perimeter Air SLD216271 P6WH LOADOUT O2/19/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.73E-14 1.70E-14 μC/mL UJ T04, T05 Plant 6WH LOADOUT General Area)-Perimeter Air SLD216271 P6WH LOADOUT O2/19/20 Gross Alpha/Beta Gross Alpha 2.44E-15 5.69E-15 9.55E-15 μC/mL D4/mL Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT O2/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.35E-14 1.70E-14 μC/mL D4/mL Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT O2/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55E-14 1.70E-14 μC/mL Plant 6WH (General Area)-Perimeter Air SLD216272 P6WH LOADOUT O2/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55E-14 1.70E-14 μC/mL Plant 6WH (General Area)-Perimeter Air Plant 6WH (General									μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD216268 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.92E-15 6.03E-15 9.14E-15 μC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.78E-15 7.09E-15 1.02E-14 μC/mL Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 8.09E-15 8.06E-15 1.02E-14 μC/mL U Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 8.09E-15 8.06E-15 1.02E-14 μC/mL U T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 1.57E-15 6.36E-15 1.09E-14 μC/mL U T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 μC/mL U	SLD216268			<u> </u>						J		· · · · · · · · · · · · · · · · · · ·
SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 4.78E-15 7.09E-15 1.02E-14 μC/mL Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 8.09E-15 8.06E-15 1.02E-14 μC/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 8.09E-15 8.06E-15 1.02E-14 μC/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 μC/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 μC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 2.22E-14 1.72E-14 2.44E-14 μC/mL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>UJ</td> <td></td> <td>· /</td>									•	UJ		· /
SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 1.53E-14 1.58E-14 2.29E-14 µCi/mL U Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 8.09E-15 8.06E-15 1.02E-14 µCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 1.57E-15 6.36E-15 1.09E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 2.44E-15 5.69E-15 9.55E-15<												` /
SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 8.09E-15 8.06E-15 1.02E-14 µCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 1.57E-15 6.36E-15 1.09E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 µCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 2.22E-14 1.37E-14 1.70E-14 µCi/mL UJ T04, T05 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 1.03E-14 8.27E-15 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>,</td>				-					•			,
SLD216269 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.82E-15 1.45E-14 2.29E-14 μCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 1.57E-15 6.36E-15 1.09E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 2.44E-15 5.69E-15 9.55E-15 μCi/mL U T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 1.03E-14 8.27E-15 9.55E-15 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55			+				<u> </u>			UJ	T04, T05	` /
SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Alpha 1.57E-15 6.36E-15 1.09E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 2.44E-15 5.69E-15 9.55E-15 μCi/mL Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 2.44E-15 5.69E-15 9.55E-15 μCi/mL Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55E-14 1.70E-14 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216272 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.57E-14 1.87E-14 μC				•	_							,
SLD216270 P6WH LOADOUT 02/18/20 Gross Alpha/Beta Gross Beta 2.02E-14 1.72E-14 2.44E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 2.44E-15 5.69E-15 9.55E-15 μCi/mL Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 1.03E-14 8.27E-15 9.55E-15 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55E-15 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55E-14 1.70E-14 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216272 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.57E-14 1.87E-14 μCi/mL				•								,
SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 2.22E-14 1.37E-14 1.70E-14 μCi/mL Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 2.44E-15 5.69E-15 9.55E-15 μCi/mL J Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 1.03E-14 8.27E-15 9.55E-15 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55E-14 1.70E-14 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216272 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.57E-14 1.87E-14 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216272 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.57E-14 1.87E-14 μCi/mL J				•	<u> </u>		ļ					,
SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 2.44E-15 5.69E-15 9.55E-15 μCi/mL J Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 1.03E-14 8.27E-15 9.55E-15 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55E-14 1.70E-14 μCi/mL = Plant 6WH (General Area)-Perimeter Air SLD216272 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.57E-14 1.87E-14 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216272 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.57E-14 1.87E-14 μCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air				-							,	` /
SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 1.03E-14 8.27E-15 9.55E-15 μ Ci/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55E-14 1.70E-14 μ Ci/mL = Plant 6WH (General Area)-Perimeter Air SLD216272 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.57E-14 1.87E-14 μ Ci/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air				<u> </u>			ļ					,
SLD216271 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.82E-14 1.55E-14 1.70E-14 μ Ci/mL = Plant 6WH (General Area)-Perimeter Air SLD216272 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.57E-14 1.87E-14 μ Ci/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air									•	J	T04, T20	,
SLD216272 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Beta 3.00E-14 1.57E-14 1.87E-14 µCi/mL J T04, T20 Plant 6WH (General Area)-Perimeter Air				-					•	=	- · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,
							<u> </u>		•	J	T04, T20	· /
SLD216272 P6WH LOADOUT 02/19/20 Gross Alpha/Beta Gross Alpha 6.39E-15 7.59E-15 1.05E-14 µCi/mL UJ T06 Plant 6WH (General Area)-Perimeter Air	SLD216272	P6WH LOADOUT	02/19/20	•	Gross Alpha	6.39E-15	7.59E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD216273	P6WH LOADOUT	02/19/20	Gross Alpha/Beta	Gross Beta	2.37E-14	1.43E-14	1.75E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD216273	P6WH LOADOUT	02/19/20	Gross Alpha/Beta	Gross Alpha	6.01E-15	7.13E-15	9.85E-15	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD216274	P6WH LOADOUT	02/20/20	Gross Alpha/Beta	Gross Beta	3.51E-14	1.64E-14	1.88E-14	μCi/mL	=		Plant 6WH (General Area)-Perimeter Air
SLD216274	P6WH LOADOUT	02/20/20	Gross Alpha/Beta	Gross Alpha	6.45E-15	7.66E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222259	P6WH LOADOUT	02/20/20	Gross Alpha/Beta	Gross Beta	3.53E-14	1.56E-14	1.77E-14	μCi/mL	=		Plant 6WH (General Area)-Perimeter Air
SLD222259	P6WH LOADOUT	02/20/20	Gross Alpha/Beta	Gross Alpha	8.41E-15	7.94E-15	9.94E-15	μCi/mL	UJ	T04, T05	Plant 6WH (General Area)-Perimeter Air
SLD222260	P6WH LOADOUT	02/20/20	Gross Alpha/Beta	Gross Alpha	-1.93E-15	3.24E-15	8.91E-15	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222260	P6WH LOADOUT	02/20/20	Gross Alpha/Beta	Gross Beta	-2.83E-16	1.03E-14	1.59E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222261	P6WH LOADOUT	02/24/20	Gross Alpha/Beta	Gross Alpha	1.26E-15	5.02E-15	9.18E-15	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222261	P6WH LOADOUT	02/24/20	Gross Alpha/Beta	Gross Beta	1.30E-14	1.22E-14	1.63E-14	μCi/mL	UJ	T04, T05	Plant 6WH (General Area)-Perimeter Air
SLD222262	P6WH LOADOUT	02/25/20	Gross Alpha/Beta	Gross Beta	2.25E-14	1.51E-14	1.90E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD222262	P6WH LOADOUT	02/25/20	Gross Alpha/Beta	Gross Alpha	1.47E-15	5.85E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222263	P6WH LOADOUT	02/25/20	Gross Alpha/Beta	Gross Beta	2.07E-14	1.31E-14	1.63E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD222263	P6WH LOADOUT	02/25/20	Gross Alpha/Beta	Gross Alpha	1.26E-15	5.02E-15	9.18E-15	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222264	P6WH LOADOUT	02/25/20	Gross Alpha/Beta	Gross Alpha	3.79E-15	6.50E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222264	P6WH LOADOUT	02/25/20	Gross Alpha/Beta	Gross Beta	1.36E-14	1.34E-14	1.80E-14	μCi/mL	UJ	T04, T05	Plant 6WH (General Area)-Perimeter Air
SLD222265	P6WH LOADOUT	02/26/20	Gross Alpha/Beta	Gross Beta	1.68E-14	1.25E-14	1.60E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD222265	P6WH LOADOUT	02/26/20	Gross Alpha/Beta	Gross Alpha	2.30E-15	5.36E-15	8.99E-15	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222266	P6WH LOADOUT	02/26/20	Gross Alpha/Beta	Gross Beta	2.41E-14	1.49E-14	1.84E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD222266	P6WH LOADOUT	02/26/20	Gross Alpha/Beta	Gross Alpha	2.03E-16	5.10E-15	1.03E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222267	P6WH LOADOUT	02/26/20	Gross Alpha/Beta	Gross Beta	2.47E-14	1.57E-14	1.95E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD222267	P6WH LOADOUT	02/26/20	Gross Alpha/Beta	Gross Alpha	2.80E-15	6.53E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222268	P6WH LOADOUT	02/27/20	Gross Alpha/Beta	Gross Beta	2.35E-14	1.31E-14	1.59E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD222268	P6WH LOADOUT	02/27/20	Gross Alpha/Beta	Gross Alpha	1.23E-15	4.88E-15	8.91E-15	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222269	P6WH LOADOUT	02/27/20	Gross Alpha/Beta	Gross Beta	4.14E-14	1.89E-14	2.40E-14	μCi/mL	=		Plant 6WH (General Area)-Perimeter Air
SLD222269	P6WH LOADOUT	02/27/20	Gross Alpha/Beta	Gross Alpha	2.69E-15	6.65E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222270	P6WH LOADOUT	02/27/20	Gross Alpha/Beta	Gross Beta	3.79E-14	1.97E-14	2.58E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD222270	P6WH LOADOUT	02/27/20	Gross Alpha/Beta	Gross Alpha	2.90E-15	7.15E-15	1.15E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222271	P6WH LOADOUT	03/02/20	Gross Alpha/Beta	Gross Alpha	5.34E-15	6.74E-15	9.27E-15	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222271	P6WH LOADOUT	03/02/20	Gross Alpha/Beta	Gross Beta	1.92E-14	1.48E-14	2.08E-14	μCi/mL	UJ	T04, T05	Plant 6WH (General Area)-Perimeter Air
SLD222272	P6WH LOADOUT	03/02/20	Gross Alpha/Beta	Gross Beta	4.20E-14	1.89E-14	2.39E-14	μCi/mL	=	,	Plant 6WH (General Area)-Perimeter Air
SLD222272	P6WH LOADOUT	03/02/20	Gross Alpha/Beta	Gross Alpha	8.43E-15	8.40E-15	1.06E-14	μCi/mL	UJ	T04, T05	Plant 6WH (General Area)-Perimeter Air
SLD222273	P6WH LOADOUT	03/02/20	Gross Alpha/Beta	Gross Alpha	2.97E-15	7.34E-15	1.18E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222273	P6WH LOADOUT	03/02/20	Gross Alpha/Beta	Gross Beta	1.94E-14	1.83E-14	2.64E-14	μCi/mL	UJ	T04, T05	Plant 6WH (General Area)-Perimeter Air
SLD222274	P6WH LOADOUT	03/03/20	Gross Alpha/Beta	Gross Alpha	8.24E-15	8.21E-15	1.04E-14	μCi/mL	UJ	T04, T05	Plant 6WH (General Area)-Perimeter Air
SLD222274	P6WH LOADOUT	03/03/20	Gross Alpha/Beta	Gross Beta	1.86E-14	1.63E-14	2.33E-14	μCi/mL	UJ	T04, T05	Plant 6WH (General Area)-Perimeter Air
SLD222275	P6WH LOADOUT	03/03/20	Gross Alpha/Beta	Gross Beta	2.75E-14	1.85E-14	2.54E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD222275	P6WH LOADOUT	03/03/20	Gross Alpha/Beta	Gross Alpha	4.08E-15	7.46E-15	1.13E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222276	P6WH LOADOUT	03/03/20	Gross Alpha/Beta	Gross Alpha	1.35E-15	5.45E-15	9.35E-15	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222276	P6WH LOADOUT	03/03/20	Gross Alpha/Beta	Gross Beta	1.40E-14	1.44E-14	2.10E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD222277	P6WH LOADOUT	03/04/20	Gross Alpha/Beta	Gross Alpha	1.75E-16	3.85E-15	7.69E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222277	P6WH LOADOUT	03/04/20	Gross Alpha/Beta	Gross Beta	1.16E-14	1.16E-14	1.68E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222277	P6WH LOADOUT	03/04/20	Gross Alpha/Beta	Gross Alpha	2.27E-15	4.86E-15	7.69E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222277	P6WH LOADOUT	03/04/20	Gross Alpha/Beta	Gross Beta	7.49E-15	1.11E-14	1.68E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222278	P6WH LOADOUT	03/04/20	Gross Alpha/Beta	Gross Alpha	2.11E-16	4.66E-15	9.31E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222278	P6WH LOADOUT	03/04/20	Gross Alpha/Beta	Gross Beta	1.15E-14	1.37E-14	2.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222279	P6WH LOADOUT	03/04/20	Gross Alpha/Beta	Gross Beta	2.39E-14	1.44E-14	1.91E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD222279	P6WH LOADOUT	03/04/20	Gross Alpha/Beta	Gross Alpha	3.77E-15	6.01E-15	8.74E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222280	P6WH LOADOUT	03/05/20	Gross Alpha/Beta	Gross Alpha	1.22E-15	4.36E-15	7.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222280	P6WH LOADOUT	03/05/20	Gross Alpha/Beta	Gross Beta	9.48E-15	1.13E-14	1.68E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222281	P6WH LOADOUT	03/05/20	Gross Alpha/Beta	Gross Alpha	1.94E-16	4.27E-15	8.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222281	P6WH LOADOUT	03/05/20	Gross Alpha/Beta	Gross Beta	1.36E-14	1.30E-14	1.87E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222282	P6WH LOADOUT	03/05/20	Gross Alpha/Beta	Gross Alpha	2.79E-15	5.97E-15	9.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222282	P6WH LOADOUT	03/05/20	Gross Alpha/Beta	Gross Beta	1.17E-14	1.39E-14	2.07E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222283	P6WH LOADOUT	03/09/20	Gross Alpha/Beta	Gross Alpha	5.13E-15	6.69E-15	9.04E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222283	P6WH LOADOUT	03/09/20	Gross Alpha/Beta	Gross Beta	9.60E-15	1.31E-14	1.98E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222284	P6WH LOADOUT	03/09/20	Gross Alpha/Beta	Gross Beta	2.20E-14	1.33E-14	1.76E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222284	P6WH LOADOUT	03/09/20	Gross Alpha/Beta	Gross Alpha	3.48E-15	5.55E-15	8.06E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222285	P6WH LOADOUT	03/09/20	Gross Alpha/Beta	Gross Beta	2.23E-14	1.25E-14	1.63E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222285	P6WH LOADOUT	03/09/20	Gross Alpha/Beta	Gross Alpha	1.18E-15	4.24E-15	7.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222286	P6WH LOADOUT	03/10/20	Gross Alpha/Beta	Gross Beta	3.67E-14	1.72E-14	2.12E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222286	P6WH LOADOUT	03/10/20	Gross Alpha/Beta	Gross Alpha	4.18E-15	6.67E-15	9.70E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222287	P6WH LOADOUT	03/10/20	Gross Alpha/Beta	Gross Alpha	1.09E-14	8.41E-15	8.74E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222287	P6WH LOADOUT	03/10/20	Gross Alpha/Beta	Gross Beta	2.08E-14	1.41E-14	1.91E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222288	P6WH LOADOUT	03/10/20	Gross Alpha/Beta	Gross Beta	2.52E-14	1.38E-14	1.79E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222288	P6WH LOADOUT	03/10/20	Gross Alpha/Beta	Gross Alpha	7.97E-15	7.18E-15	8.17E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222289	P6WH LOADOUT	03/11/20	Gross Alpha/Beta	Gross Beta	2.44E-14	1.40E-14	1.83E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222289	P6WH LOADOUT	03/11/20	Gross Alpha/Beta	Gross Alpha	5.90E-15	6.62E-15	8.39E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222290	P6WH LOADOUT	03/11/20	Gross Alpha/Beta	Gross Alpha	1.42E-14	9.66E-15	9.31E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222290	P6WH LOADOUT	03/11/20	Gross Alpha/Beta	Gross Beta	4.59E-14	1.76E-14	2.04E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222291	P6WH LOADOUT	03/12/20	Gross Alpha/Beta	Gross Beta	1.94E-14	1.27E-14	1.72E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222291	P6WH LOADOUT	03/12/20	Gross Alpha/Beta	Gross Alpha	2.32E-15	4.96E-15	7.86E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222291	P6WH LOADOUT	03/12/20	Gross Alpha/Beta	Gross Alpha	3.39E-15	5.41E-15	7.86E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222291	P6WH LOADOUT	03/12/20	Gross Alpha/Beta	Gross Beta	1.11E-14	1.18E-14	1.72E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222292	P6WH LOADOUT	03/12/20	Gross Alpha/Beta	Gross Beta	1.93E-14	1.39E-14	1.91E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222292	P6WH LOADOUT	03/12/20	Gross Alpha/Beta	Gross Alpha	2.58E-15	5.52E-15	8.74E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222293	P6WH LOADOUT	03/12/20	Gross Alpha/Beta	Gross Alpha	1.54E-15	5.52E-15	9.70E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222293	P6WH LOADOUT	03/12/20	Gross Alpha/Beta	Gross Beta	7.74E-15	1.38E-14	2.12E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222294	P6WH LOADOUT	03/16/20	Gross Alpha/Beta	Gross Alpha	1.25E-15	4.47E-15	7.86E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222294	P6WH LOADOUT	03/16/20	Gross Alpha/Beta	Gross Beta	9.03E-15	1.15E-14	1.72E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222295	P6WH LOADOUT	03/16/20	Gross Alpha/Beta	Gross Beta	1.99E-14	1.39E-14	1.89E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222295	P6WH LOADOUT	03/16/20	Gross Alpha/Beta	Gross Alpha	-9.83E-16	3.63E-15	8.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222296	P6WH LOADOUT	03/16/20	Gross Alpha/Beta	Gross Beta	2.10E-14	1.52E-14	2.09E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222296	P6WH LOADOUT	03/16/20	Gross Alpha/Beta	Gross Alpha	4.12E-15	6.57E-15	9.55E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222297	P6WH LOADOUT	03/17/20	Gross Alpha/Beta	Gross Alpha	4.55E-15	5.94E-15	8.03E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222297	P6WH LOADOUT	03/17/20	Gross Alpha/Beta	Gross Beta	1.35E-14	1.23E-14	1.75E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222298	P6WH LOADOUT	03/17/20	Gross Alpha/Beta	Gross Alpha	1.97E-16	4.33E-15	8.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222298	P6WH LOADOUT	03/17/20	Gross Alpha/Beta	Gross Beta	1.83E-14	1.37E-14	1.89E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222299	P6WH LOADOUT	03/17/20	Gross Alpha/Beta	Gross Alpha	4.20E-15	6.71E-15	9.75E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222299	P6WH LOADOUT	03/17/20	Gross Alpha/Beta	Gross Beta	1.72E-14	1.50E-14	2.13E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222300	P6WH LOADOUT	03/18/20	Gross Alpha/Beta	Gross Alpha	1.26E-15	4.53E-15	7.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222300	P6WH LOADOUT	03/18/20	Gross Alpha/Beta	Gross Beta	9.15E-15	1.17E-14	1.74E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222301	P6WH LOADOUT	03/18/20	Gross Alpha/Beta	Gross Alpha	2.59E-15	5.55E-15	8.78E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222301	P6WH LOADOUT	03/18/20	Gross Alpha/Beta	Gross Beta	3.92E-15	1.21E-14	1.92E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD222302	P6WH LOADOUT	03/18/20	Gross Alpha/Beta	Gross Beta	2.34E-14	1.54E-14	2.08E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222302	P6WH LOADOUT	03/18/20	Gross Alpha/Beta	Gross Alpha	4.10E-15	6.54E-15	9.50E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222303	P6WH LOADOUT	03/24/20	Gross Alpha/Beta	Gross Beta	2.11E-14	1.48E-14	2.02E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222303	P6WH LOADOUT	03/24/20	Gross Alpha/Beta	Gross Alpha	2.09E-16	4.61E-15	9.22E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222304	P6WH LOADOUT	03/25/20	Gross Alpha/Beta	Gross Alpha	1.49E-15	5.36E-15	9.40E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222304	P6WH LOADOUT	03/25/20	Gross Alpha/Beta	Gross Beta	1.49E-14	1.43E-14	2.06E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222305	P6WH LOADOUT	03/26/20	Gross Alpha/Beta	Gross Alpha	1.44E-15	5.15E-15	9.04E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222305	P6WH LOADOUT	03/26/20	Gross Alpha/Beta	Gross Beta	1.36E-14	1.36E-14	1.98E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222306	P6WH LOADOUT	03/30/20	Gross Alpha/Beta	Gross Beta	2.87E-14	1.54E-14	1.98E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222306	P6WH LOADOUT	03/30/20	Gross Alpha/Beta	Gross Alpha	6.36E-15	7.14E-15	9.04E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222307	P6WH LOADOUT	03/31/20	Gross Alpha/Beta	Gross Beta	2.18E-14	1.52E-14	2.08E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222307	P6WH LOADOUT	03/31/20	Gross Alpha/Beta	Gross Alpha	5.39E-15	7.03E-15	9.50E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222308	P6WH LOADOUT	03/11/20	Gross Alpha/Beta	Gross Alpha	1.67E-14	9.14E-15	7.57E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222308	P6WH LOADOUT	03/11/20	Gross Alpha/Beta	Gross Beta	2.73E-14	1.33E-14	1.65E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222309	P6WH LOADOUT	04/01/20	Gross Alpha/Beta	Gross Alpha	1.07E-16	5.81E-15	1.10E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222309	P6WH LOADOUT	04/01/20	Gross Alpha/Beta	Gross Beta	1.22E-14	1.81E-14	2.70E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222309	P6WH LOADOUT	04/01/20	Gross Alpha/Beta	Gross Alpha	1.04E-14	9.34E-15	1.10E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222309	P6WH LOADOUT	04/01/20	Gross Alpha/Beta	Gross Beta	1.22E-14	1.81E-14	2.70E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222310	P6WH LOADOUT	04/02/20	Gross Alpha/Beta	Gross Alpha	4.28E-15	6.33E-15	8.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222310	P6WH LOADOUT	04/02/20	Gross Alpha/Beta	Gross Beta	5.75E-15	1.43E-14	2.20E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222311	P6WH LOADOUT	04/02/20	Gross Alpha/Beta	Gross Alpha	1.37E-15	6.26E-15	1.08E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222311	P6WH LOADOUT	04/02/20	Gross Alpha/Beta	Gross Beta	1.03E-14	1.76E-14	2.66E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222312	P6WH LOADOUT	04/02/20	Gross Alpha/Beta	Gross Alpha	8.18E-15	8.05E-15	9.87E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222312	P6WH LOADOUT	04/02/20	Gross Alpha/Beta	Gross Beta	2.25E-14	1.73E-14	2.42E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222313	P6WH LOADOUT	04/06/20	Gross Alpha/Beta	Gross Beta	2.70E-14	1.65E-14	2.23E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222313	P6WH LOADOUT	04/06/20	Gross Alpha/Beta	Gross Alpha	6.45E-15	7.08E-15	9.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222314	P6WH LOADOUT	04/06/20	Gross Alpha/Beta	Gross Beta	3.39E-14	1.99E-14	2.66E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222314	P6WH LOADOUT	04/06/20	Gross Alpha/Beta	Gross Alpha	1.06E-16	5.72E-15	1.08E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222315	P6WH LOADOUT	04/06/20	Gross Alpha/Beta	Gross Beta	2.70E-14	1.81E-14	2.48E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222315	P6WH LOADOUT	04/06/20	Gross Alpha/Beta	Gross Alpha	1.28E-15	5.84E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222316	P6WH LOADOUT	04/07/20	Gross Alpha/Beta	Gross Beta	2.49E-14	1.63E-14	2.23E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222316	P6WH LOADOUT	04/07/20	Gross Alpha/Beta	Gross Alpha	6.45E-15	7.08E-15	9.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222317	P6WH LOADOUT	04/07/20	Gross Alpha/Beta	Gross Beta	3.51E-14	2.02E-14	2.68E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222317	P6WH LOADOUT	04/07/20	Gross Alpha/Beta	Gross Alpha	7.78E-15	8.54E-15	1.09E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222318	P6WH LOADOUT	04/07/20	Gross Alpha/Beta	Gross Beta	2.74E-14	1.79E-14	2.44E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222318	P6WH LOADOUT	04/07/20	Gross Alpha/Beta	Gross Alpha	9.70E-17	5.26E-15	9.97E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222319	P6WH LOADOUT	04/08/20	Gross Alpha/Beta	Gross Beta	2.85E-14	1.70E-14	2.28E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222319	P6WH LOADOUT	04/08/20	Gross Alpha/Beta	Gross Alpha	1.18E-15	5.38E-15	9.31E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222320	P6WH LOADOUT	04/08/20	Gross Alpha/Beta	Gross Beta	3.84E-14	2.12E-14	2.80E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222320	P6WH LOADOUT	04/08/20	Gross Alpha/Beta	Gross Alpha	5.45E-15	8.06E-15	1.14E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222321	P6WH LOADOUT	04/08/20	Gross Alpha/Beta	Gross Alpha	1.49E-14	1.02E-14	1.05E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222321	P6WH LOADOUT	04/08/20	Gross Alpha/Beta	Gross Beta	2.97E-14	1.90E-14	2.58E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222322	P6WH LOADOUT	04/09/20	Gross Alpha/Beta	Gross Beta	3.17E-14	1.85E-14	2.48E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222322	P6WH LOADOUT	04/09/20	Gross Alpha/Beta	Gross Alpha	9.55E-15	8.58E-15	1.01E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222323	P6WH LOADOUT	04/09/20	Gross Alpha/Beta	Gross Beta	2.42E-14	1.62E-14	2.23E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222323	P6WH LOADOUT	04/09/20	Gross Alpha/Beta	Gross Alpha	8.57E-15	7.70E-15	9.07E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222324	P6WH LOADOUT	04/09/20	Gross Alpha/Beta	Gross Alpha	1.41E-15	6.42E-15	1.11E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD222324	P6WH LOADOUT	04/09/20	Gross Alpha/Beta	Gross Beta	1.49E-14	1.85E-14	2.73E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222325	P6WH LOADOUT	04/13/20	Gross Alpha/Beta	Gross Alpha	8.43E-15	7.57E-15	8.92E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222325	P6WH LOADOUT	04/13/20	Gross Alpha/Beta	Gross Beta	2.03E-14	1.56E-14	2.19E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222326	P6WH LOADOUT	04/13/20	Gross Alpha/Beta	Gross Alpha	9.16E-15	9.02E-15	1.11E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222326	P6WH LOADOUT	04/13/20	Gross Alpha/Beta	Gross Beta	2.26E-14	1.91E-14	2.71E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222327	P6WH LOADOUT	04/13/20	Gross Alpha/Beta	Gross Beta	2.60E-14	1.79E-14	2.47E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222327	P6WH LOADOUT	04/13/20	Gross Alpha/Beta	Gross Alpha	-1.08E-15	4.77E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222328	P6WH LOADOUT	04/14/20	Gross Alpha/Beta	Gross Beta	2.73E-14	1.50E-14	2.20E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222328	P6WH LOADOUT	04/14/20	Gross Alpha/Beta	Gross Alpha	4.03E-15	5.70E-15	9.25E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222328	P6WH LOADOUT	04/14/20	Gross Alpha/Beta	Gross Alpha	4.03E-15	5.70E-15	9.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222328	P6WH LOADOUT	04/14/20	Gross Alpha/Beta	Gross Beta	1.75E-14	1.40E-14	2.20E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222329	P6WH LOADOUT	04/14/20	Gross Alpha/Beta	Gross Beta	2.98E-14	1.79E-14	2.67E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222329	P6WH LOADOUT	04/14/20	Gross Alpha/Beta	Gross Alpha	2.35E-15	5.91E-15	1.13E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222330	P6WH LOADOUT	04/14/20	Gross Alpha/Beta	Gross Alpha	1.04E-14	8.29E-15	1.04E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222330	P6WH LOADOUT	04/14/20	Gross Alpha/Beta	Gross Beta	2.58E-14	1.63E-14	2.46E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222331	P6WH LOADOUT	04/15/20	Gross Alpha/Beta	Gross Beta	3.95E-14	1.70E-14	2.33E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222331	P6WH LOADOUT	04/15/20	Gross Alpha/Beta	Gross Alpha	2.05E-15	5.17E-15	9.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222332	P6WH LOADOUT	04/15/20	Gross Alpha/Beta	Gross Beta	3.85E-14	1.91E-14	2.74E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222332	P6WH LOADOUT	04/15/20	Gross Alpha/Beta	Gross Alpha	8.97E-15	8.47E-15	1.16E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222333	P6WH LOADOUT	04/15/20	Gross Alpha/Beta	Gross Beta	4.21E-14	1.73E-14	2.36E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222333	P6WH LOADOUT	04/15/20	Gross Alpha/Beta	Gross Alpha	3.20E-15	5.68E-15	9.93E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222334	P6WH LOADOUT	04/16/20	Gross Alpha/Beta	Gross Alpha	1.37E-14	8.70E-15	9.41E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222334	P6WH LOADOUT	04/16/20	Gross Alpha/Beta	Gross Beta	3.63E-14	1.61E-14	2.23E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222335	P6WH LOADOUT	04/16/20	Gross Alpha/Beta	Gross Beta	3.98E-14	1.94E-14	2.77E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222335	P6WH LOADOUT	04/16/20	Gross Alpha/Beta	Gross Alpha	-2.21E-16	4.85E-15	1.17E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222336	P6WH LOADOUT	04/16/20	Gross Alpha/Beta	Gross Beta	3.60E-14	1.73E-14	2.46E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222336	P6WH LOADOUT	04/16/20	Gross Alpha/Beta	Gross Alpha	8.04E-15	7.58E-15	1.04E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222337	P6WH LOADOUT	04/20/20	Gross Alpha/Beta	Gross Alpha	9.88E-15	7.88E-15	9.84E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222337	P6WH LOADOUT	04/20/20	Gross Alpha/Beta	Gross Beta	2.16E-14	1.51E-14	2.33E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222338	P6WH LOADOUT	04/20/20	Gross Alpha/Beta	Gross Beta	2.60E-14	1.63E-14	2.47E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222338	P6WH LOADOUT	04/20/20	Gross Alpha/Beta	Gross Alpha	8.08E-15	7.62E-15	1.04E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222339	P6WH LOADOUT	04/20/20	Gross Alpha/Beta	Gross Alpha	3.72E-15	6.61E-15	1.16E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222339	P6WH LOADOUT	04/20/20	Gross Alpha/Beta	Gross Beta	1.14E-14	1.63E-14	2.74E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222340	P6WH LOADOUT	04/21/20	Gross Alpha/Beta	Gross Alpha	1.13E-14	9.02E-15	1.13E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222340	P6WH LOADOUT	04/21/20	Gross Alpha/Beta	Gross Beta	2.30E-14	1.72E-14	2.67E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222341	P6WH LOADOUT	04/21/20	Gross Alpha/Beta	Gross Alpha	-2.00E-16	4.38E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222341	P6WH LOADOUT	04/21/20	Gross Alpha/Beta	Gross Beta	1.44E-14	1.53E-14	2.50E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222342	P6WH LOADOUT	04/21/20	Gross Alpha/Beta	Gross Alpha	3.06E-15	5.44E-15	9.50E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222342	P6WH LOADOUT	04/21/20	Gross Alpha/Beta	Gross Beta	1.08E-14	1.35E-14	2.25E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222343	P6WH LOADOUT	04/22/20	Gross Alpha/Beta	Gross Alpha	5.38E-15	6.44E-15	9.79E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222343	P6WH LOADOUT	04/22/20	Gross Alpha/Beta	Gross Beta	1.19E-14	1.40E-14	2.32E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222344	P6WH LOADOUT	04/22/20	Gross Alpha/Beta	Gross Alpha	1.08E-14	8.58E-15	1.07E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222344	P6WH LOADOUT	04/22/20	Gross Alpha/Beta	Gross Beta	2.59E-14	1.67E-14	2.54E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222345	P6WH LOADOUT	04/22/20	Gross Alpha/Beta	Gross Alpha	8.91E-16	4.45E-15	9.41E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222345	P6WH LOADOUT	04/22/20	Gross Alpha/Beta	Gross Beta	7.12E-16	1.23E-14	2.23E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222346	P6WH LOADOUT	04/23/20	Gross Alpha/Beta	Gross Alpha	1.09E-15	5.44E-15	1.15E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222346	P6WH LOADOUT	04/23/20	Gross Alpha/Beta	Gross Beta	7.83E-15	1.58E-14	2.73E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD222347	P6WH LOADOUT	04/27/20	Gross Alpha/Beta	Gross Alpha	4.90E-15	6.94E-15	1.13E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222347	P6WH LOADOUT	04/27/20	Gross Alpha/Beta	Gross Beta	2.13E-14	1.70E-14	2.67E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222348	P6WH LOADOUT	04/27/20	Gross Alpha/Beta	Gross Alpha	1.33E-15	5.03E-15	9.12E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222348	P6WH LOADOUT	04/27/20	Gross Alpha/Beta	Gross Beta	1.57E-14	1.33E-14	1.99E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222348	P6WH LOADOUT	04/27/20	Gross Alpha/Beta	Gross Alpha	5.00E-15	6.59E-15	9.12E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222348	P6WH LOADOUT	04/27/20	Gross Alpha/Beta	Gross Beta	1.80E-14	1.36E-14	1.99E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222349	P6WH LOADOUT	04/27/20	Gross Alpha/Beta	Gross Alpha	1.22E-15	4.63E-15	8.39E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222349	P6WH LOADOUT	04/27/20	Gross Alpha/Beta	Gross Beta	1.44E-14	1.22E-14	1.83E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222350	P6WH LOADOUT	04/28/20	Gross Alpha/Beta	Gross Beta	2.98E-14	1.49E-14	1.98E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222350	P6WH LOADOUT	04/28/20	Gross Alpha/Beta	Gross Alpha	6.20E-15	7.00E-15	9.08E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222351	P6WH LOADOUT	04/28/20	Gross Alpha/Beta	Gross Beta	3.06E-14	1.64E-14	2.22E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222351	P6WH LOADOUT	04/28/20	Gross Alpha/Beta	Gross Alpha	2.84E-15	6.23E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222352	P6WH LOADOUT	04/28/20	Gross Alpha/Beta	Gross Beta	2.91E-14	1.40E-14	1.84E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222352	P6WH LOADOUT	04/28/20	Gross Alpha/Beta	Gross Alpha	-1.04E-15	3.37E-15	8.43E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222353	P6WH LOADOUT	04/29/20	Gross Alpha/Beta	Gross Alpha	2.21E-15	4.85E-15	7.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222353	P6WH LOADOUT	04/29/20	Gross Alpha/Beta	Gross Beta	5.70E-16	9.80E-15	1.73E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222354	P6WH LOADOUT	04/29/20	Gross Alpha/Beta	Gross Alpha	-1.20E-15	3.89E-15	9.73E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222354	P6WH LOADOUT	04/29/20	Gross Alpha/Beta	Gross Beta	2.39E-15	1.23E-14	2.13E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222355	P6WH LOADOUT	04/29/20	Gross Alpha/Beta	Gross Alpha	2.43E-15	5.34E-15	8.70E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222355	P6WH LOADOUT	04/29/20	Gross Alpha/Beta	Gross Beta	3.64E-15	1.12E-14	1.90E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222356	P6WH LOADOUT	04/30/20	Gross Alpha/Beta	Gross Beta	2.85E-14	1.37E-14	1.80E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222356	P6WH LOADOUT	04/30/20	Gross Alpha/Beta	Gross Alpha	6.74E-15	6.74E-15	8.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222357	P6WH LOADOUT	04/30/20	Gross Alpha/Beta	Gross Alpha	2.48E-15	5.44E-15	8.86E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222357	P6WH LOADOUT	04/30/20	Gross Alpha/Beta	Gross Beta	1.45E-14	1.28E-14	1.94E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222358	P6WH LOADOUT	04/30/20	Gross Alpha/Beta	Gross Alpha	6.86E-15	7.74E-15	1.00E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222358	P6WH LOADOUT	04/30/20	Gross Alpha/Beta	Gross Beta	1.90E-14	1.49E-14	2.19E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222359	P6WH LOADOUT	05/04/20	Gross Alpha/Beta	Gross Alpha	4.64E-15	6.12E-15	8.47E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222359	P6WH LOADOUT	05/04/20	Gross Alpha/Beta	Gross Beta	1.09E-14	1.19E-14	1.85E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222360	P6WH LOADOUT	05/04/20	Gross Alpha/Beta	Gross Beta	2.62E-14	1.47E-14	2.01E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222360	P6WH LOADOUT	05/04/20	Gross Alpha/Beta	Gross Alpha	3.81E-15	6.17E-15	9.21E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222361	P6WH LOADOUT	05/04/20	Gross Alpha/Beta	Gross Alpha	4.23E-15	6.84E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222361	P6WH LOADOUT	05/04/20	Gross Alpha/Beta	Gross Beta	1.75E-14	1.49E-14	2.23E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222362	P6WH LOADOUT	05/05/20	Gross Alpha/Beta	Gross Alpha	2.78E-15	6.10E-15	9.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222362	P6WH LOADOUT	05/05/20	Gross Alpha/Beta	Gross Beta	1.79E-14	1.46E-14	2.17E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222363	P6WH LOADOUT	05/05/20	Gross Alpha/Beta	Gross Alpha	2.43E-15	5.34E-15	8.70E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222363	P6WH LOADOUT	05/05/20	Gross Alpha/Beta	Gross Beta	1.12E-14	1.22E-14	1.90E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222364	P6WH LOADOUT	05/05/20	Gross Alpha/Beta	Gross Alpha	9.00E-17	3.88E-15	8.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222364	P6WH LOADOUT	05/05/20	Gross Alpha/Beta	Gross Beta	-5.71E-15	9.09E-15	1.76E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222365	P6WH LOADOUT	05/06/20	Gross Alpha/Beta	Gross Alpha	9.00E-17	3.88E-15	8.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222365	P6WH LOADOUT	05/06/20	Gross Alpha/Beta	Gross Beta	1.46E-14	1.18E-14	1.76E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222366	P6WH LOADOUT	05/06/20	Gross Alpha/Beta	Gross Alpha	-1.08E-15	3.51E-15	8.78E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222366	P6WH LOADOUT	05/06/20	Gross Alpha/Beta	Gross Beta	1.13E-14	1.23E-14	1.92E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222367	P6WH LOADOUT	05/06/20	Gross Alpha/Beta	Gross Alpha	1.48E-15	5.60E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222367	P6WH LOADOUT	05/06/20	Gross Alpha/Beta	Gross Beta	9.53E-15	1.38E-14	2.22E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222368	P6WH LOADOUT	05/07/20	Gross Alpha/Beta	Gross Alpha	3.64E-16	4.01E-15	9.07E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222368	P6WH LOADOUT	05/07/20	Gross Alpha/Beta	Gross Beta	1.05E-14	1.59E-14	2.36E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222368	P6WH LOADOUT	05/07/20	Gross Alpha/Beta	Gross Alpha	2.55E-15	5.07E-15	9.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD222368	P6WH LOADOUT	05/07/20	Gross Alpha/Beta	Gross Beta	1.12E-14	1.60E-14	2.36E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222369	P6WH LOADOUT	05/07/20	Gross Alpha/Beta	Gross Alpha	1.77E-15	5.55E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222369	P6WH LOADOUT	05/07/20	Gross Alpha/Beta	Gross Beta	2.07E-14	2.01E-14	2.87E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222370	P6WH LOADOUT	05/11/20	Gross Alpha/Beta	Gross Alpha	3.08E-15	6.12E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222370	P6WH LOADOUT	05/11/20	Gross Alpha/Beta	Gross Beta	1.62E-14	1.95E-14	2.85E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222371	P6WH LOADOUT	05/11/20	Gross Alpha/Beta	Gross Alpha	3.61E-15	5.48E-15	8.99E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222371	P6WH LOADOUT	05/11/20	Gross Alpha/Beta	Gross Beta	5.35E-15	1.53E-14	2.34E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222372	P6WH LOADOUT	05/11/20	Gross Alpha/Beta	Gross Alpha	9.62E-15	7.81E-15	9.58E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222372	P6WH LOADOUT	05/11/20	Gross Alpha/Beta	Gross Beta	1.65E-14	1.73E-14	2.50E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222373	P6WH LOADOUT	05/12/20	Gross Alpha/Beta	Gross Alpha	3.57E-15	5.41E-15	8.88E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222373	P6WH LOADOUT	05/12/20	Gross Alpha/Beta	Gross Beta	1.03E-14	1.56E-14	2.31E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222374	P6WH LOADOUT	05/12/20	Gross Alpha/Beta	Gross Alpha	5.12E-15	6.43E-15	9.81E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222374	P6WH LOADOUT	05/12/20	Gross Alpha/Beta	Gross Beta	2.24E-14	1.82E-14	2.56E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222375	P6WH LOADOUT	05/12/20	Gross Alpha/Beta	Gross Alpha	1.09E-14	8.89E-15	1.09E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222375	P6WH LOADOUT	05/12/20	Gross Alpha/Beta	Gross Beta	1.61E-14	1.94E-14	2.84E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222376	P6WH LOADOUT	05/13/20	Gross Alpha/Beta	Gross Alpha	3.58E-15	5.43E-15	8.92E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222376	P6WH LOADOUT	05/13/20	Gross Alpha/Beta	Gross Beta	1.17E-14	1.58E-14	2.32E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222377	P6WH LOADOUT	05/13/20	Gross Alpha/Beta	Gross Alpha	3.81E-16	4.20E-15	9.49E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222377	P6WH LOADOUT	05/13/20	Gross Alpha/Beta	Gross Beta	1.48E-14	1.70E-14	2.47E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222378	P6WH LOADOUT	05/13/20	Gross Alpha/Beta	Gross Alpha	4.40E-15	6.67E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222378	P6WH LOADOUT	05/13/20	Gross Alpha/Beta	Gross Beta	2.12E-15	1.82E-14	2.85E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222379	P6WH LOADOUT	05/14/20	Gross Alpha/Beta	Gross Alpha	1.08E-14	8.79E-15	1.08E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222379	P6WH LOADOUT	05/14/20	Gross Alpha/Beta	Gross Beta	2.20E-14	1.98E-14	2.81E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222380	P6WH LOADOUT	05/14/20	Gross Alpha/Beta	Gross Alpha	7.95E-15	7.00E-15	8.99E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222380	P6WH LOADOUT	05/14/20	Gross Alpha/Beta	Gross Beta	2.34E-14	1.70E-14	2.34E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222381	P6WH LOADOUT	05/14/20	Gross Alpha/Beta	Gross Beta	3.04E-14	1.82E-14	2.44E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222381	P6WH LOADOUT	05/14/20	Gross Alpha/Beta	Gross Alpha	8.27E-15	7.29E-15	9.36E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222382	P6WH LOADOUT	05/18/20	Gross Alpha/Beta	Gross Alpha	1.70E-15	5.32E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222382	P6WH LOADOUT	05/18/20	Gross Alpha/Beta	Gross Beta	2.05E-15	1.75E-14	2.75E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222383	P6WH LOADOUT	05/18/20	Gross Alpha/Beta	Gross Alpha	3.74E-16	4.12E-15	9.32E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222383	P6WH LOADOUT	05/18/20	Gross Alpha/Beta	Gross Beta	9.28E-15	1.62E-14	2.43E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222384	P6WH LOADOUT	05/18/20	Gross Alpha/Beta	Gross Alpha	1.40E-15	4.40E-15	8.73E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222384	P6WH LOADOUT	05/18/20	Gross Alpha/Beta	Gross Beta	6.59E-15	1.50E-14	2.27E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222385	P6WH LOADOUT	05/19/20	Gross Alpha/Beta	Gross Alpha	-1.76E-15	2.48E-15	8.76E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222385	P6WH LOADOUT	05/19/20	Gross Alpha/Beta	Gross Beta	7.32E-15	1.51E-14	2.28E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222386	P6WH LOADOUT	05/19/20	Gross Alpha/Beta	Gross Alpha	3.69E-15	5.60E-15	9.19E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222386	P6WH LOADOUT	05/19/20	Gross Alpha/Beta	Gross Beta	2.24E-14	1.72E-14	2.40E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222387	P6WH LOADOUT	05/19/20	Gross Alpha/Beta	Gross Beta	3.05E-14	2.00E-14	2.72E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222387	P6WH LOADOUT	05/19/20	Gross Alpha/Beta	Gross Alpha	-8.40E-16	3.88E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222388	P6WH LOADOUT	05/20/20	Gross Alpha/Beta	Gross Alpha	-2.94E-15	3.13E-15	9.15E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222388	P6WH LOADOUT	05/20/20	Gross Alpha/Beta	Gross Beta	1.14E-14	1.30E-14	1.69E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222388	P6WH LOADOUT	05/20/20	Gross Alpha/Beta	Gross Alpha	3.67E-16	4.93E-15	9.15E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222388	P6WH LOADOUT	05/20/20	Gross Alpha/Beta	Gross Beta	7.11E-16	1.18E-14	1.69E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222389	P6WH LOADOUT	05/20/20	Gross Alpha/Beta	Gross Alpha	4.36E-16	5.85E-15	1.09E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222389	P6WH LOADOUT	05/20/20	Gross Alpha/Beta	Gross Beta	1.86E-14	1.60E-14	2.01E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222390	P6WH LOADOUT	05/20/20	Gross Alpha/Beta	Gross Alpha	-7.79E-16	4.67E-15	9.70E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222390	P6WH LOADOUT	05/20/20	Gross Alpha/Beta	Gross Beta	1.36E-14	1.40E-14	1.80E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD222391	P6WH LOADOUT	05/21/20	Gross Alpha/Beta	Gross Beta	1.70E-14	1.36E-14	1.69E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222391	P6WH LOADOUT	05/21/20	Gross Alpha/Beta	Gross Alpha	-7.32E-16	4.39E-15	9.11E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222392	P6WH LOADOUT	05/27/20	Gross Alpha/Beta	Gross Alpha	-1.86E-15	3.87E-15	9.27E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222392	P6WH LOADOUT	05/27/20	Gross Alpha/Beta	Gross Beta	2.88E-15	1.22E-14	1.72E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222393	P6WH LOADOUT	05/27/20	Gross Alpha/Beta	Gross Beta	3.04E-14	1.59E-14	1.81E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222393	P6WH LOADOUT	05/27/20	Gross Alpha/Beta	Gross Alpha	1.57E-15	5.78E-15	9.79E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222394	P6WH LOADOUT	05/27/20	Gross Alpha/Beta	Gross Alpha	3.15E-15	7.14E-15	1.12E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222394	P6WH LOADOUT	05/27/20	Gross Alpha/Beta	Gross Beta	1.83E-14	1.65E-14	2.07E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222395	P6WH LOADOUT	05/26/20	Gross Alpha/Beta	Gross Beta	3.31E-14	1.73E-14	1.97E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222395	P6WH LOADOUT	05/26/20	Gross Alpha/Beta	Gross Alpha	6.83E-15	8.11E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222396	P6WH LOADOUT	05/26/20	Gross Alpha/Beta	Gross Beta	3.17E-14	1.81E-14	2.09E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222396	P6WH LOADOUT	05/26/20	Gross Alpha/Beta	Gross Alpha	3.18E-15	7.22E-15	1.13E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222397	P6WH LOADOUT	05/26/20	Gross Alpha/Beta	Gross Beta	5.59E-14	2.25E-14	2.38E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222397	P6WH LOADOUT	05/26/20	Gross Alpha/Beta	Gross Alpha	5.15E-15	8.75E-15	1.28E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222398	P6WH LOADOUT	05/28/20	Gross Alpha/Beta	Gross Beta	1.77E-14	1.37E-14	1.69E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222398	P6WH LOADOUT	05/28/20	Gross Alpha/Beta	Gross Alpha	8.05E-15	7.63E-15	9.11E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222399	P6WH LOADOUT	05/28/20	Gross Alpha/Beta	Gross Beta	2.51E-14	1.54E-14	1.81E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222399	P6WH LOADOUT	05/28/20	Gross Alpha/Beta	Gross Alpha	-1.97E-15	4.09E-15	9.79E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222400	P6WH LOADOUT	05/28/20	Gross Alpha/Beta	Gross Alpha	4.45E-16	5.97E-15	1.11E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222400	P6WH LOADOUT	05/28/20	Gross Alpha/Beta	Gross Beta	1.29E-14	1.57E-14	2.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222401	P6WH LOADOUT	06/01/20	Gross Alpha/Beta	Gross Beta	2.35E-14	1.44E-14	1.69E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222401	P6WH LOADOUT	06/01/20	Gross Alpha/Beta	Gross Alpha	2.57E-15	5.84E-15	9.15E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222402	P6WH LOADOUT	06/01/20	Gross Alpha/Beta	Gross Beta	2.33E-14	1.50E-14	1.79E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222402	P6WH LOADOUT	06/01/20	Gross Alpha/Beta	Gross Alpha	2.71E-15	6.16E-15	9.65E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222403	P6WH LOADOUT	06/01/20	Gross Alpha/Beta	Gross Beta	2.74E-14	1.72E-14	2.04E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222403	P6WH LOADOUT	06/01/20	Gross Alpha/Beta	Gross Alpha	-8.85E-16	5.31E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222404	P6WH LOADOUT	06/02/20	Gross Alpha/Beta	Gross Beta	2.61E-14	1.60E-14	1.88E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222404	P6WH LOADOUT	06/02/20	Gross Alpha/Beta	Gross Alpha	-8.17E-16	4.90E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222405	P6WH LOADOUT	06/02/20	Gross Alpha/Beta	Gross Alpha	2.78E-15	6.30E-15	9.88E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222405	P6WH LOADOUT	06/02/20	Gross Alpha/Beta	Gross Beta	1.46E-14	1.43E-14	1.83E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222406	P6WH LOADOUT	06/02/20	Gross Alpha/Beta	Gross Beta	3.71E-14	1.90E-14	2.15E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222406	P6WH LOADOUT	06/02/20	Gross Alpha/Beta	Gross Alpha	-9.34E-16	5.60E-15	1.16E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222407	P6WH LOADOUT	06/03/20	Gross Alpha/Beta	Gross Beta	2.27E-14	1.39E-14	1.64E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222407	P6WH LOADOUT	06/03/20	Gross Alpha/Beta	Gross Alpha	3.55E-16	4.76E-15	8.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222412	P6WH LOADOUT	06/03/20	Gross Alpha/Beta	Gross Beta	5.21E-14	1.72E-14	1.84E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222412	P6WH LOADOUT	06/03/20	Gross Alpha/Beta	Gross Alpha	3.89E-15	5.95E-15	9.33E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222412	P6WH LOADOUT	06/03/20	Gross Alpha/Beta	Gross Beta	6.32E-14	1.83E-14	1.84E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222412	P6WH LOADOUT	06/03/20	Gross Alpha/Beta	Gross Alpha	-1.80E-15	3.09E-15	9.33E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222413	P6WH LOADOUT	06/03/20	Gross Alpha/Beta	Gross Beta	3.87E-14	1.75E-14	2.11E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222413	P6WH LOADOUT	06/03/20	Gross Alpha/Beta	Gross Alpha	4.44E-15	6.81E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222414	P6WH LOADOUT	06/04/20	Gross Alpha/Beta	Gross Beta	2.00E-14	1.38E-14	1.85E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222414	P6WH LOADOUT	06/04/20	Gross Alpha/Beta	Gross Alpha	4.76E-16	4.48E-15	9.38E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222415	P6WH LOADOUT	06/04/20	Gross Alpha/Beta	Gross Beta	3.11E-14	1.57E-14	1.95E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222415	P6WH LOADOUT	06/04/20	Gross Alpha/Beta	Gross Alpha	2.90E-15	5.81E-15	9.87E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222416	P6WH LOADOUT	06/04/20	Gross Alpha/Beta	Gross Beta	3.54E-14	1.79E-14	2.22E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222416	P6WH LOADOUT	06/04/20	Gross Alpha/Beta	Gross Alpha	6.05E-15	7.69E-15	1.13E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222417	P6WH LOADOUT	06/08/20	Gross Alpha/Beta	Gross Alpha	-2.08E-15	3.57E-15	1.08E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD222417	P6WH LOADOUT	06/08/20	Gross Alpha/Beta	Gross Beta	1.62E-14	1.51E-14	2.13E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222418	P6WH LOADOUT	06/08/20	Gross Alpha/Beta	Gross Beta	2.63E-14	1.48E-14	1.89E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222418	P6WH LOADOUT	06/08/20	Gross Alpha/Beta	Gross Alpha	4.85E-16	4.56E-15	9.55E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222419	P6WH LOADOUT	06/08/20	Gross Alpha/Beta	Gross Beta	2.06E-14	1.35E-14	1.78E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222419	P6WH LOADOUT	06/08/20	Gross Alpha/Beta	Gross Alpha	2.65E-15	5.31E-15	9.01E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222420	P6WH LOADOUT	06/09/20	Gross Alpha/Beta	Gross Alpha	-1.99E-15	3.41E-15	1.03E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222420	P6WH LOADOUT	06/09/20	Gross Alpha/Beta	Gross Beta	8.17E-15	1.36E-14	2.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222421	P6WH LOADOUT	06/10/20	Gross Alpha/Beta	Gross Alpha	1.85E-15	5.75E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222421	P6WH LOADOUT	06/10/20	Gross Alpha/Beta	Gross Beta	5.13E-15	1.37E-14	2.12E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222422	P6WH LOADOUT	06/10/20	Gross Alpha/Beta	Gross Alpha	-3.03E-15	2.17E-15	9.64E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222422	P6WH LOADOUT	06/10/20	Gross Alpha/Beta	Gross Beta	7.64E-15	1.27E-14	1.90E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222423	P6WH LOADOUT	06/10/20	Gross Alpha/Beta	Gross Alpha	4.61E-16	4.34E-15	9.09E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222423	P6WH LOADOUT	06/10/20	Gross Alpha/Beta	Gross Beta	1.08E-14	1.24E-14	1.80E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222424	P6WH LOADOUT	06/11/20	Gross Alpha/Beta	Gross Beta	3.00E-14	1.72E-14	2.21E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222424	P6WH LOADOUT	06/11/20	Gross Alpha/Beta	Gross Alpha	5.68E-16	5.34E-15	1.12E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222425	P6WH LOADOUT	06/11/20	Gross Alpha/Beta	Gross Alpha	4.94E-16	4.65E-15	9.73E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222425	P6WH LOADOUT	06/11/20	Gross Alpha/Beta	Gross Beta	1.31E-14	1.35E-14	1.92E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222426	P6WH LOADOUT	06/11/20	Gross Alpha/Beta	Gross Alpha	2.82E-15	5.65E-15	9.59E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222426	P6WH LOADOUT	06/11/20	Gross Alpha/Beta	Gross Beta	1.74E-14	1.38E-14	1.90E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222427	P6WH LOADOUT	06/15/20	Gross Alpha/Beta	Gross Beta	3.25E-14	1.70E-14	2.14E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222427	P6WH LOADOUT	06/15/20	Gross Alpha/Beta	Gross Alpha	3.19E-15	6.39E-15	1.08E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222428	P6WH LOADOUT	06/15/20	Gross Alpha/Beta	Gross Beta	2.31E-14	1.39E-14	1.81E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222428	P6WH LOADOUT	06/15/20	Gross Alpha/Beta	Gross Alpha	1.58E-15	4.92E-15	9.17E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222429	P6WH LOADOUT	06/15/20	Gross Alpha/Beta	Gross Beta	2.63E-14	1.41E-14	1.78E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222429	P6WH LOADOUT	06/15/20	Gross Alpha/Beta	Gross Alpha	3.75E-15	5.75E-15	9.01E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222430	P6WH LOADOUT	06/16/20	Gross Alpha/Beta	Gross Beta	3.03E-14	1.42E-14	1.73E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222430	P6WH LOADOUT	06/16/20	Gross Alpha/Beta	Gross Alpha	1.51E-15	4.69E-15	8.75E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222431	P6WH LOADOUT	06/16/20	Gross Alpha/Beta	Gross Beta	3.06E-14	1.64E-14	2.08E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222431	P6WH LOADOUT	06/16/20	Gross Alpha/Beta	Gross Alpha	-2.03E-15	3.48E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222432	P6WH LOADOUT	06/16/20	Gross Alpha/Beta	Gross Beta	2.86E-14	1.44E-14	1.80E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222432	P6WH LOADOUT	06/16/20	Gross Alpha/Beta	Gross Alpha	3.78E-15	5.80E-15	9.09E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222432	P6WH LOADOUT	06/16/20	Gross Alpha/Beta	Gross Beta	4.29E-14	1.59E-14	1.80E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222432	P6WH LOADOUT	06/16/20	Gross Alpha/Beta	Gross Alpha	1.57E-15	4.87E-15	9.09E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222433	P6WH LOADOUT	06/17/20	Gross Alpha/Beta	Gross Alpha	5.74E-16	5.40E-15	1.13E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222433	P6WH LOADOUT	06/17/20	Gross Alpha/Beta	Gross Beta	1.34E-14	1.54E-14	2.24E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222434	P6WH LOADOUT	06/17/20	Gross Alpha/Beta	Gross Alpha	4.74E-16	4.46E-15	9.33E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222434	P6WH LOADOUT	06/17/20	Gross Alpha/Beta	Gross Beta	1.33E-14	1.30E-14	1.84E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222435	P6WH LOADOUT	06/17/20	Gross Alpha/Beta	Gross Alpha	-6.21E-16	3.59E-15	8.75E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222435	P6WH LOADOUT	06/17/20	Gross Alpha/Beta	Gross Beta	1.31E-14	1.23E-14	1.73E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222436	P6WH LOADOUT	06/18/20	Gross Alpha/Beta	Gross Beta	2.77E-14	1.37E-14	1.69E-14	μCi/mL	=	- 1	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222436	P6WH LOADOUT	06/18/20	Gross Alpha/Beta	Gross Alpha	6.70E-15	6.56E-15	8.57E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222437	P6WH LOADOUT	06/18/20	Gross Alpha/Beta	Gross Beta	2.16E-14	1.34E-14	1.75E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222437	P6WH LOADOUT	06/18/20	Gross Alpha/Beta	Gross Alpha	-6.29E-16	3.64E-15	8.86E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222438	P6WH LOADOUT	06/18/20	Gross Alpha/Beta	Gross Beta	2.71E-14	1.63E-14	2.12E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222438	P6WH LOADOUT	06/18/20	Gross Alpha/Beta	Gross Alpha	5.45E-16	5.12E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222439	P6WH LOADOUT	06/22/20	Gross Alpha/Beta	Gross Beta	4.63E-14	1.91E-14	2.24E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222439	P6WH LOADOUT	06/22/20	Gross Alpha/Beta	Gross Alpha	1.95E-15	6.07E-15	1.13E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD222440	P6WH LOADOUT	06/22/20	Gross Alpha/Beta	Gross Beta	4.12E-14	1.65E-14	1.91E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222440	P6WH LOADOUT	06/22/20	Gross Alpha/Beta	Gross Alpha	8.75E-15	7.79E-15	9.68E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222441	P6WH LOADOUT	06/22/20	Gross Alpha/Beta	Gross Beta	3.64E-14	1.55E-14	1.83E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222441	P6WH LOADOUT	06/22/20	Gross Alpha/Beta	Gross Alpha	4.98E-15	6.32E-15	9.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222442	P6WH LOADOUT	06/23/20	Gross Alpha/Beta	Gross Beta	2.59E-14	1.39E-14	1.76E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222442	P6WH LOADOUT	06/23/20	Gross Alpha/Beta	Gross Alpha	4.51E-16	4.25E-15	8.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222443	P6WH LOADOUT	06/23/20	Gross Alpha/Beta	Gross Alpha	-6.72E-16	3.89E-15	9.46E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222443	P6WH LOADOUT	06/23/20	Gross Alpha/Beta	Gross Beta	1.42E-14	1.33E-14	1.87E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222444	P6WH LOADOUT	06/23/20	Gross Alpha/Beta	Gross Beta	4.69E-14	1.81E-14	2.07E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222444	P6WH LOADOUT	06/23/20	Gross Alpha/Beta	Gross Alpha	1.81E-15	5.61E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222445	P6WH LOADOUT	06/24/20	Gross Alpha/Beta	Gross Alpha	4.53E-16	4.27E-15	8.93E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222445	P6WH LOADOUT	06/24/20	Gross Alpha/Beta	Gross Beta	1.76E-14	1.30E-14	1.77E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222446	P6WH LOADOUT	06/24/20	Gross Alpha/Beta	Gross Beta	2.41E-14	1.45E-14	1.89E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222446	P6WH LOADOUT	06/24/20	Gross Alpha/Beta	Gross Alpha	2.81E-15	5.63E-15	9.55E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222447	P6WH LOADOUT	06/24/20	Gross Alpha/Beta	Gross Alpha	-7.74E-16	4.48E-15	1.09E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222447	P6WH LOADOUT	06/24/20	Gross Alpha/Beta	Gross Beta	1.46E-14	1.51E-14	2.15E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222448	P6WH LOADOUT	06/25/20	Gross Alpha/Beta	Gross Beta	3.45E-14	1.74E-14	2.16E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222448	P6WH LOADOUT	06/25/20	Gross Alpha/Beta	Gross Alpha	5.56E-16	5.23E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222449	P6WH LOADOUT	06/25/20	Gross Alpha/Beta	Gross Beta	2.61E-14	1.49E-14	1.92E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222449	P6WH LOADOUT	06/25/20	Gross Alpha/Beta	Gross Alpha	6.42E-15	7.06E-15	9.73E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222450	P6WH LOADOUT	06/25/20	Gross Alpha/Beta	Gross Beta	1.99E-14	1.34E-14	1.78E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222450	P6WH LOADOUT	06/25/20	Gross Alpha/Beta	Gross Alpha	-6.40E-16	3.70E-15	9.01E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222451	P6WH LOADOUT	06/29/20	Gross Alpha/Beta	Gross Alpha	2.62E-15	5.24E-15	8.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222451	P6WH LOADOUT	06/29/20	Gross Alpha/Beta	Gross Beta	1.61E-14	1.28E-14	1.76E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222452	P6WH LOADOUT	06/29/20	Gross Alpha/Beta	Gross Alpha	1.35E-14	8.96E-15	1.01E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222452	P6WH LOADOUT	06/29/20	Gross Alpha/Beta	Gross Beta	3.57E-14	1.79E-14	2.37E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222453	P6WH LOADOUT	06/29/20	Gross Alpha/Beta	Gross Alpha	3.68E-15	6.47E-15	1.14E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222453	P6WH LOADOUT	06/29/20	Gross Alpha/Beta	Gross Beta	2.50E-14	1.89E-14	2.70E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222454	P6WH LOADOUT	06/30/20	Gross Alpha/Beta	Gross Alpha	1.37E-14	8.66E-15	9.41E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222454	P6WH LOADOUT	06/30/20	Gross Alpha/Beta	Gross Beta	1.78E-14	1.53E-14	2.22E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222455	P6WH LOADOUT	06/30/20	Gross Alpha/Beta	Gross Alpha	1.03E-14	8.17E-15	1.03E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222455	P6WH LOADOUT	06/30/20	Gross Alpha/Beta	Gross Beta	1.78E-14	1.65E-14	2.42E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222456	P6WH LOADOUT	06/30/20	Gross Alpha/Beta	Gross Alpha	1.02E-14	8.09E-15	1.02E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222456	P6WH LOADOUT	06/30/20	Gross Alpha/Beta	Gross Beta	2.22E-14	1.68E-14	2.40E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222457	P6WH LOADOUT	07/01/20	Gross Alpha/Beta	Gross Alpha	1.16E-15	4.46E-15	8.78E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222457	P6WH LOADOUT	07/01/20	Gross Alpha/Beta	Gross Beta	9.82E-15	1.21E-14	1.81E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222457	P6WH LOADOUT	07/01/20	Gross Alpha/Beta	Gross Alpha	4.65E-15	6.02E-15	8.78E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222457	P6WH LOADOUT	07/01/20	Gross Alpha/Beta	Gross Beta	9.07E-15	1.20E-14	1.81E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222458	P6WH LOADOUT	07/01/20	Gross Alpha/Beta	Gross Alpha	0	3.91E-15	9.03E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD222458	P6WH LOADOUT	07/01/20	Gross Alpha/Beta	Gross Beta	1.63E-14	1.33E-14	1.86E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228098	P6WH LOADOUT	07/01/20	Gross Alpha/Beta	Gross Alpha	0	3.73E-15	8.62E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228098	P6WH LOADOUT	07/01/20	Gross Alpha/Beta	Gross Beta	1.63E-14	1.27E-14	1.77E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228099	P6WH LOADOUT	07/02/20	Gross Alpha/Beta	Gross Alpha	1.19E-15	4.56E-15	8.99E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228099	P6WH LOADOUT	07/02/20	Gross Alpha/Beta	Gross Beta	1.01E-14	1.24E-14	1.85E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228100	P6WH LOADOUT	07/02/20	Gross Alpha/Beta	Gross Beta	2.10E-14	1.39E-14	1.87E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228100	P6WH LOADOUT	07/02/20	Gross Alpha/Beta	Gross Alpha	1.20E-15	4.60E-15	9.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228101	P6WH LOADOUT	07/02/20	Gross Alpha/Beta	Gross Alpha	2.30E-15	4.96E-15	8.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228101	P6WH LOADOUT	07/02/20	Gross Alpha/Beta	Gross Beta	1.34E-14	1.24E-14	1.78E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228102	P6WH LOADOUT	07/06/20	Gross Alpha/Beta	Gross Beta	6.09E-14	1.80E-14	1.83E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228102	P6WH LOADOUT	07/06/20	Gross Alpha/Beta	Gross Alpha	3.54E-15	5.62E-15	8.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228103	P6WH LOADOUT	07/06/20	Gross Alpha/Beta	Gross Beta	3.86E-14	1.50E-14	1.72E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228103	P6WH LOADOUT	07/06/20	Gross Alpha/Beta	Gross Alpha	5.54E-15	6.14E-15	8.36E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228104	P6WH LOADOUT	07/06/20	Gross Alpha/Beta	Gross Alpha	-1.14E-15	2.94E-15	8.58E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228104	P6WH LOADOUT	07/06/20	Gross Alpha/Beta	Gross Beta	3.73E-15	1.11E-14	1.77E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228105	P6WH LOADOUT	07/07/20	Gross Alpha/Beta	Gross Alpha	9.30E-15	7.62E-15	8.78E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228105	P6WH LOADOUT	07/07/20	Gross Alpha/Beta	Gross Beta	6.16E-14	1.79E-14	1.81E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228106	P6WH LOADOUT	07/07/20	Gross Alpha/Beta	Gross Beta	5.16E-14	1.68E-14	1.80E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228106	P6WH LOADOUT	07/07/20	Gross Alpha/Beta	Gross Alpha	5.79E-15	6.42E-15	8.74E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228107	P6WH LOADOUT	07/07/20	Gross Alpha/Beta	Gross Beta	7.35E-14	1.83E-14	1.68E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228107	P6WH LOADOUT	07/07/20	Gross Alpha/Beta	Gross Alpha	7.59E-15	6.76E-15	8.18E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228108	P6WH LOADOUT	07/08/20	Gross Alpha/Beta	Gross Beta	4.99E-14	1.72E-14	1.88E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228108	P6WH LOADOUT	07/08/20	Gross Alpha/Beta	Gross Alpha	3.62E-15	5.75E-15	9.11E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228109	P6WH LOADOUT	07/08/20	Gross Alpha/Beta	Gross Beta	3.57E-14	1.56E-14	1.87E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228109	P6WH LOADOUT	07/08/20	Gross Alpha/Beta	Gross Alpha	2.40E-15	5.19E-15	9.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228110	P6WH LOADOUT	07/08/20	Gross Alpha/Beta	Gross Beta	3.80E-14	1.51E-14	1.76E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228110	P6WH LOADOUT	07/08/20	Gross Alpha/Beta	Gross Alpha	3.40E-15	5.39E-15	8.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228111	P6WH LOADOUT	07/09/20	Gross Alpha/Beta	Gross Beta	3.85E-14	1.65E-14	1.97E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228111	P6WH LOADOUT	07/09/20	Gross Alpha/Beta	Gross Alpha	2.54E-15	5.48E-15	9.57E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228112	P6WH LOADOUT	07/09/20	Gross Alpha/Beta	Gross Beta	2.87E-14	1.42E-14	1.77E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228112	P6WH LOADOUT	07/09/20	Gross Alpha/Beta	Gross Alpha	4.55E-15	5.88E-15	8.58E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228113	P6WH LOADOUT	07/09/20	Gross Alpha/Beta	Gross Beta	4.02E-14	1.62E-14	1.89E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228113	P6WH LOADOUT	07/09/20	Gross Alpha/Beta	Gross Alpha	1.22E-15	4.67E-15	9.20E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228114	P6WH LOADOUT	07/13/20	Gross Alpha/Beta	Gross Beta	1.84E-14	1.34E-14	1.84E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228114	P6WH LOADOUT	07/13/20	Gross Alpha/Beta	Gross Alpha	3.55E-15	5.65E-15	8.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228115	P6WH LOADOUT	07/13/20	Gross Alpha/Beta	Gross Alpha	3.32E-15	5.28E-15	8.36E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228115	P6WH LOADOUT	07/13/20	Gross Alpha/Beta	Gross Beta	1.65E-14	1.24E-14	1.72E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228116	P6WH LOADOUT	07/13/20	Gross Alpha/Beta	Gross Beta	2.83E-14	1.54E-14	2.23E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD228116	P6WH LOADOUT	07/13/20	Gross Alpha/Beta	Gross Alpha	1.72E-15	5.30E-15	9.84E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD228116	P6WH LOADOUT	07/13/20	Gross Alpha/Beta	Gross Beta	2.32E-14	1.49E-14	2.23E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228116	P6WH LOADOUT	07/13/20	Gross Alpha/Beta	Gross Alpha	6.08E-15	6.87E-15	9.84E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228117	P6WH LOADOUT	07/14/20	Gross Alpha/Beta	Gross Beta	3.82E-14	1.64E-14	2.22E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228117	P6WH LOADOUT	07/14/20	Gross Alpha/Beta	Gross Alpha	7.14E-15	7.18E-15	9.79E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228118	P6WH LOADOUT	07/14/20	Gross Alpha/Beta	Gross Alpha	1.05E-14	8.23E-15	9.92E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228118	P6WH LOADOUT	07/14/20	Gross Alpha/Beta	Gross Beta	3.36E-14	1.61E-14	2.25E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228119	P6WH LOADOUT	07/14/20	Gross Alpha/Beta	Gross Alpha	1.09E-14	8.53E-15	1.03E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228119	P6WH LOADOUT	07/14/20	Gross Alpha/Beta	Gross Beta	4.25E-14	1.74E-14	2.33E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228120	P6WH LOADOUT	07/15/20	Gross Alpha/Beta	Gross Alpha	1.14E-14	8.34E-15	9.71E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228120	P6WH LOADOUT	07/15/20	Gross Alpha/Beta	Gross Beta	4.22E-14	1.67E-14	2.20E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228121	P6WH LOADOUT	07/15/20	Gross Alpha/Beta	Gross Beta	4.87E-14	1.71E-14	2.17E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228121	P6WH LOADOUT	07/15/20	Gross Alpha/Beta	Gross Alpha	9.10E-15	7.65E-15	9.58E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD228122	P6WH LOADOUT	07/15/20	Gross Alpha/Beta	Gross Alpha	2.34E-14	1.15E-14	1.03E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228122	P6WH LOADOUT	07/15/20	Gross Alpha/Beta	Gross Beta	6.97E-14	2.01E-14	2.33E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228123	P6WH LOADOUT	07/16/20	Gross Alpha/Beta	Gross Alpha	1.44E-14	9.03E-15	9.58E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228123	P6WH LOADOUT	07/16/20	Gross Alpha/Beta	Gross Beta	5.79E-14	1.80E-14	2.17E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228124	P6WH LOADOUT	07/16/20	Gross Alpha/Beta	Gross Alpha	1.39E-14	9.61E-15	1.08E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228124	P6WH LOADOUT	07/16/20	Gross Alpha/Beta	Gross Beta	3.67E-14	1.76E-14	2.45E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228125	P6WH LOADOUT	07/16/20	Gross Alpha/Beta	Gross Alpha	1.73E-14	9.96E-15	1.00E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228125	P6WH LOADOUT	07/16/20	Gross Alpha/Beta	Gross Beta	4.57E-14	1.74E-14	2.27E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228126	P6WH LOADOUT	07/20/20	Gross Alpha/Beta	Gross Alpha	1.47E-14	9.19E-15	9.75E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228126	P6WH LOADOUT	07/20/20	Gross Alpha/Beta	Gross Beta	2.59E-14	1.51E-14	2.21E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228127	P6WH LOADOUT	07/20/20	Gross Alpha/Beta	Gross Beta	4.37E-14	1.82E-14	2.44E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228127	P6WH LOADOUT	07/20/20	Gross Alpha/Beta	Gross Alpha	7.86E-15	7.90E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228128	P6WH LOADOUT	07/20/20	Gross Alpha/Beta	Gross Alpha	1.64E-14	1.03E-14	1.09E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228128	P6WH LOADOUT	07/20/20	Gross Alpha/Beta	Gross Beta	4.65E-14	1.86E-14	2.47E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228129	P6WH LOADOUT	07/21/20	Gross Alpha/Beta	Gross Alpha	2.01E-14	1.04E-14	9.75E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228129	P6WH LOADOUT	07/21/20	Gross Alpha/Beta	Gross Beta	4.96E-14	1.74E-14	2.21E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228130	P6WH LOADOUT	07/21/20	Gross Alpha/Beta	Gross Beta	4.42E-14	1.77E-14	2.34E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228130	P6WH LOADOUT	07/21/20	Gross Alpha/Beta	Gross Alpha	2.96E-15	6.02E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228131	P6WH LOADOUT	07/21/20	Gross Alpha/Beta	Gross Beta	2.56E-14	1.60E-14	2.38E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228131	P6WH LOADOUT	07/21/20	Gross Alpha/Beta	Gross Alpha	1.85E-15	5.67E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228132	P6WH LOADOUT	07/22/20	Gross Alpha/Beta	Gross Beta	3.18E-14	1.64E-14	2.33E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228132	P6WH LOADOUT	07/22/20	Gross Alpha/Beta	Gross Alpha	1.80E-15	5.54E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228133	P6WH LOADOUT	07/22/20	Gross Alpha/Beta	Gross Alpha	2.94E-15	5.99E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228133	P6WH LOADOUT	07/22/20	Gross Alpha/Beta	Gross Beta	1.82E-14	1.50E-14	2.33E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD228134	P6WH LOADOUT	07/22/20	Gross Alpha/Beta	Gross Beta	2.47E-14	1.48E-14	2.17E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228134	P6WH LOADOUT	07/22/20	Gross Alpha/Beta	Gross Alpha	1.68E-15	5.16E-15	9.58E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228135	P6WH LOADOUT	07/23/20	Gross Alpha/Beta	Gross Beta	2.91E-14	1.66E-14	2.42E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228135	P6WH LOADOUT	07/23/20	Gross Alpha/Beta	Gross Alpha	3.05E-15	6.22E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228136	P6WH LOADOUT	07/23/20	Gross Alpha/Beta	Gross Beta	3.25E-14	1.69E-14	1.95E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228136	P6WH LOADOUT	07/23/20	Gross Alpha/Beta	Gross Alpha	6.05E-15	6.98E-15	9.66E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228136	P6WH LOADOUT	07/23/20	Gross Alpha/Beta	Gross Beta	2.88E-14	1.65E-14	1.95E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228136	P6WH LOADOUT	07/23/20	Gross Alpha/Beta	Gross Alpha	2.88E-16	4.69E-15	9.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228137	P6WH LOADOUT	07/23/20	Gross Alpha/Beta	Gross Beta	2.21E-14	1.50E-14	1.83E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228137	P6WH LOADOUT	07/23/20	Gross Alpha/Beta	Gross Alpha	2.43E-15	5.35E-15	9.05E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228138	P6WH LOADOUT	07/27/20	Gross Alpha/Beta	Gross Alpha	-2.05E-15	3.44E-15	9.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228138	P6WH LOADOUT	07/27/20	Gross Alpha/Beta	Gross Beta	1.33E-15	1.39E-14	1.99E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228139	P6WH LOADOUT	07/27/20	Gross Alpha/Beta	Gross Alpha	-8.80E-16	4.16E-15	9.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228139	P6WH LOADOUT	07/27/20	Gross Alpha/Beta	Gross Beta	1.33E-15	1.39E-14	1.99E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228140	P6WH LOADOUT	07/27/20	Gross Alpha/Beta	Gross Alpha	5.69E-15	6.56E-15	9.09E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228140	P6WH LOADOUT	07/27/20	Gross Alpha/Beta	Gross Beta	5.24E-16	1.28E-14	1.84E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228141	P6WH LOADOUT	07/28/20	Gross Alpha/Beta	Gross Alpha	3.52E-15	5.80E-15	9.09E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228141	P6WH LOADOUT	07/28/20	Gross Alpha/Beta	Gross Beta	1.59E-14	1.44E-14	1.84E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228142	P6WH LOADOUT	07/28/20	Gross Alpha/Beta	Gross Beta	2.98E-14	1.61E-14	1.88E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228142	P6WH LOADOUT	07/28/20	Gross Alpha/Beta	Gross Alpha	2.77E-16	4.51E-15	9.28E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228143	P6WH LOADOUT	07/28/20	Gross Alpha/Beta	Gross Alpha	8.10E-15	7.48E-15	9.37E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228143	P6WH LOADOUT	07/28/20	Gross Alpha/Beta	Gross Beta	7.75E-15	1.39E-14	1.89E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228144	P6WH LOADOUT	07/29/20	Gross Alpha/Beta	Gross Beta	2.41E-14	1.55E-14	1.88E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228144	P6WH LOADOUT	07/29/20	Gross Alpha/Beta	Gross Alpha	3.60E-15	5.92E-15	9.28E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228145	P6WH LOADOUT	07/29/20	Gross Alpha/Beta	Gross Alpha	1.14E-14	8.36E-15	9.28E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228145	P6WH LOADOUT	07/29/20	Gross Alpha/Beta	Gross Beta	2.20E-14	1.53E-14	1.88E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228146	P6WH LOADOUT	07/29/20	Gross Alpha/Beta	Gross Beta	1.95E-14	1.44E-14	1.78E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228146	P6WH LOADOUT	07/29/20	Gross Alpha/Beta	Gross Alpha	8.68E-15	7.36E-15	8.82E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228147	P6WH LOADOUT	07/30/20	Gross Alpha/Beta	Gross Alpha	2.72E-15	5.99E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228147	P6WH LOADOUT	07/30/20	Gross Alpha/Beta	Gross Beta	9.15E-15	1.52E-14	2.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228148	P6WH LOADOUT	07/30/20	Gross Alpha/Beta	Gross Alpha	2.92E-16	4.75E-15	9.80E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228148	P6WH LOADOUT	07/30/20	Gross Alpha/Beta	Gross Beta	4.33E-15	1.42E-14	1.98E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228149	P6WH LOADOUT	07/30/20	Gross Alpha/Beta	Gross Beta	3.54E-14	1.69E-14	1.91E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228149	P6WH LOADOUT	07/30/20	Gross Alpha/Beta	Gross Alpha	1.41E-15	5.11E-15	9.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228150	P6WH LOADOUT	08/03/20	Gross Alpha/Beta	Gross Alpha	-8.93E-16	4.22E-15	9.98E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228150	P6WH LOADOUT	08/03/20	Gross Alpha/Beta	Gross Beta	1.75E-14	1.58E-14	2.02E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228151	P6WH LOADOUT	08/03/20	Gross Alpha/Beta	Gross Beta	2.42E-14	1.64E-14	2.00E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228151	P6WH LOADOUT	08/03/20	Gross Alpha/Beta	Gross Alpha	1.47E-15	5.35E-15	9.89E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228152	P6WH LOADOUT	08/03/20	Gross Alpha/Beta	Gross Beta	3.59E-14	1.66E-14	1.86E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228152	P6WH LOADOUT	08/03/20	Gross Alpha/Beta	Gross Alpha	7.96E-15	7.35E-15	9.20E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228153	P6WH LOADOUT	08/04/20	Gross Alpha/Beta	Gross Alpha	1.48E-15	5.37E-15	9.93E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228153	P6WH LOADOUT	08/04/20	Gross Alpha/Beta	Gross Beta	2.10E-15	1.41E-14	2.01E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228154	P6WH LOADOUT	08/04/20	Gross Alpha/Beta	Gross Alpha	9.42E-15	7.99E-15	9.58E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228154	P6WH LOADOUT	08/04/20	Gross Alpha/Beta	Gross Beta	7.18E-15	1.42E-14	1.93E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228155	P6WH LOADOUT	08/04/20	Gross Alpha/Beta	Gross Beta	2.14E-14	1.49E-14	1.83E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228155	P6WH LOADOUT	08/04/20	Gross Alpha/Beta	Gross Alpha	-8.09E-16	3.82E-15	9.05E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228156	P6WH LOADOUT	08/05/20	Gross Alpha/Beta	Gross Alpha	3.15E-15	5.59E-15	9.69E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228156	P6WH LOADOUT	08/05/20	Gross Alpha/Beta	Gross Beta	1.08E-14	1.30E-14	2.20E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228156	P6WH LOADOUT	08/05/20	Gross Alpha/Beta	Gross Alpha	2.13E-15	5.20E-15	9.69E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228156	P6WH LOADOUT	08/05/20	Gross Alpha/Beta	Gross Beta	7.37E-15	1.26E-14	2.20E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228157	P6WH LOADOUT	08/05/20	Gross Alpha/Beta	Gross Alpha	1.18E-15	5.12E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228157	P6WH LOADOUT	08/05/20	Gross Alpha/Beta	Gross Beta	2.24E-14	1.51E-14	2.36E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228158	P6WH LOADOUT	08/05/20	Gross Alpha/Beta	Gross Alpha	4.45E-15	6.34E-15	1.03E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228158	P6WH LOADOUT	08/05/20	Gross Alpha/Beta	Gross Beta	7.13E-15	1.34E-14	2.35E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228159	P6WH LOADOUT	08/06/20	Gross Alpha/Beta	Gross Alpha	2.13E-15	5.20E-15	9.69E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228159	P6WH LOADOUT	08/06/20	Gross Alpha/Beta	Gross Beta	2.03E-14	1.40E-14	2.20E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228160	P6WH LOADOUT	08/06/20	Gross Alpha/Beta	Gross Alpha	6.59E-15	7.03E-15	1.03E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228160	P6WH LOADOUT	08/06/20	Gross Alpha/Beta	Gross Beta	1.50E-14	1.42E-14	2.34E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228161	P6WH LOADOUT	08/06/20	Gross Alpha/Beta	Gross Beta	2.50E-14	1.52E-14	2.33E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228161	P6WH LOADOUT	08/06/20	Gross Alpha/Beta	Gross Alpha	1.17E-15	5.05E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228162	P6WH LOADOUT	08/10/20	Gross Alpha/Beta	Gross Alpha	1.42E-14	9.60E-15	1.12E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228162	P6WH LOADOUT	08/10/20	Gross Alpha/Beta	Gross Beta	4.76E-14	1.86E-14	2.54E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228163	P6WH LOADOUT	08/10/20	Gross Alpha/Beta	Gross Beta	3.99E-14	1.68E-14	2.36E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228163	P6WH LOADOUT	08/10/20	Gross Alpha/Beta	Gross Alpha	5.56E-15	6.74E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228164	P6WH LOADOUT	08/10/20	Gross Alpha/Beta	Gross Beta	3.35E-14	1.69E-14	2.48E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228164	P6WH LOADOUT	08/10/20	Gross Alpha/Beta	Gross Alpha	5.84E-15	7.08E-15	1.09E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228165	P6WH LOADOUT	08/11/20	Gross Alpha/Beta	Gross Alpha	5.92E-15	7.18E-15	1.11E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228165	P6WH LOADOUT	08/11/20	Gross Alpha/Beta	Gross Beta	1.85E-14	1.55E-14	2.51E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228166	P6WH LOADOUT	08/11/20	Gross Alpha/Beta	Gross Alpha	6.93E-15	7.38E-15	1.08E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228166	P6WH LOADOUT	08/11/20	Gross Alpha/Beta	Gross Beta	1.43E-14	1.47E-14	2.46E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228167	P6WH LOADOUT	08/11/20	Gross Alpha/Beta	Gross Alpha	4.33E-15	6.18E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228167	P6WH LOADOUT	08/11/20	Gross Alpha/Beta	Gross Beta	2.00E-15	1.25E-14	2.29E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228168	P6WH LOADOUT	08/12/20	Gross Alpha/Beta	Gross Alpha	1.12E-14	8.47E-15	1.05E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228168	P6WH LOADOUT	08/12/20	Gross Alpha/Beta	Gross Beta	1.68E-14	1.47E-14	2.39E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228169	P6WH LOADOUT	08/12/20	Gross Alpha/Beta	Gross Alpha	2.33E-15	5.69E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228169	P6WH LOADOUT	08/12/20	Gross Alpha/Beta	Gross Beta	2.37E-14	1.55E-14	2.41E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228170	P6WH LOADOUT	08/12/20	Gross Alpha/Beta	Gross Alpha	1.14E-15	4.94E-15	1.00E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228170	P6WH LOADOUT	08/12/20	Gross Alpha/Beta	Gross Beta	1.40E-14	1.37E-14	2.28E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228171	P6WH LOADOUT	08/17/20	Gross Alpha/Beta	Gross Beta	2.73E-14	1.51E-14	2.28E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228171	P6WH LOADOUT	08/17/20	Gross Alpha/Beta	Gross Alpha	9.59E-15	7.78E-15	1.00E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228172	P6WH LOADOUT	08/17/20	Gross Alpha/Beta	Gross Beta	3.47E-14	1.66E-14	2.40E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228172	P6WH LOADOUT	08/17/20	Gross Alpha/Beta	Gross Alpha	7.88E-15	7.56E-15	1.06E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228173	P6WH LOADOUT	08/17/20	Gross Alpha/Beta	Gross Beta	3.68E-14	1.67E-14	2.39E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228173	P6WH LOADOUT	08/17/20	Gross Alpha/Beta	Gross Alpha	4.52E-15	6.46E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228174	P6WH LOADOUT	08/18/20	Gross Alpha/Beta	Gross Beta	2.93E-14	1.59E-14	2.38E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228174	P6WH LOADOUT	08/18/20	Gross Alpha/Beta	Gross Alpha	7.81E-15	7.49E-15	1.05E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228175	P6WH LOADOUT	08/18/20	Gross Alpha/Beta	Gross Beta	2.93E-14	1.59E-14	2.38E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228175	P6WH LOADOUT	08/18/20	Gross Alpha/Beta	Gross Alpha	6.71E-15	7.15E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228176	P6WH LOADOUT	08/18/20	Gross Alpha/Beta	Gross Alpha	1.26E-14	8.71E-15	9.96E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228176	P6WH LOADOUT	08/18/20	Gross Alpha/Beta	Gross Beta	4.64E-14	1.58E-14	1.81E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228176	P6WH LOADOUT	08/18/20	Gross Alpha/Beta	Gross Beta	5.21E-14	1.64E-14	1.81E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228176	P6WH LOADOUT	08/18/20	Gross Alpha/Beta	Gross Alpha	6.01E-15	6.82E-15	9.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228177	P6WH LOADOUT	08/19/20	Gross Alpha/Beta	Gross Beta	1.94E-14	1.23E-14	1.73E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228177	P6WH LOADOUT	08/19/20	Gross Alpha/Beta	Gross Alpha	1.57E-15	4.99E-15	9.51E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228178	P6WH LOADOUT	08/19/20	Gross Alpha/Beta	Gross Alpha	5.54E-16	4.80E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228178	P6WH LOADOUT	08/19/20	Gross Alpha/Beta	Gross Beta	1.56E-14	1.25E-14	1.84E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228179	P6WH LOADOUT	08/19/20	Gross Alpha/Beta	Gross Beta	2.08E-14	1.32E-14	1.85E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228179	P6WH LOADOUT	08/19/20	Gross Alpha/Beta	Gross Alpha	1.68E-15	5.34E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228180	P6WH LOADOUT	08/23/20	Gross Alpha/Beta	Gross Alpha	1.33E-14	8.72E-15	9.67E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228180	P6WH LOADOUT	08/23/20	Gross Alpha/Beta	Gross Beta	3.55E-14	1.43E-14	1.76E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228181	P6WH LOADOUT	08/23/20	Gross Alpha/Beta	Gross Beta	3.06E-14	1.45E-14	1.88E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228181	P6WH LOADOUT	08/23/20	Gross Alpha/Beta	Gross Alpha	9.62E-15	8.10E-15	1.03E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228182	P6WH LOADOUT	08/23/20	Gross Alpha/Beta	Gross Alpha	1.09E-14	8.49E-15	1.04E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228182	P6WH LOADOUT	08/23/20	Gross Alpha/Beta	Gross Beta	3.67E-14	1.52E-14	1.90E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228183	P6WH LOADOUT	08/20/20	Gross Alpha/Beta	Gross Alpha	5.76E-15	6.54E-15	9.55E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228183	P6WH LOADOUT	08/20/20	Gross Alpha/Beta	Gross Beta	1.54E-14	1.19E-14	1.74E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228184	P6WH LOADOUT	08/20/20	Gross Alpha/Beta	Gross Beta	2.53E-14	1.38E-14	1.87E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228184	P6WH LOADOUT	08/20/20	Gross Alpha/Beta	Gross Alpha	6.20E-15	7.03E-15	1.03E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228185	P6WH LOADOUT	08/20/20	Gross Alpha/Beta	Gross Alpha	1.48E-14	9.29E-15	1.00E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228185	P6WH LOADOUT	08/20/20	Gross Alpha/Beta	Gross Beta	3.53E-14	1.47E-14	1.82E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228186	P6WH LOADOUT	08/24/20	Gross Alpha/Beta	Gross Alpha	1.92E-14	1.07E-14	1.06E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228186	P6WH LOADOUT	08/24/20	Gross Alpha/Beta	Gross Beta	8.02E-14	1.98E-14	1.93E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228187	P6WH LOADOUT	08/24/20	Gross Alpha/Beta	Gross Alpha	1.42E-14	9.35E-15	1.04E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228187	P6WH LOADOUT	08/24/20	Gross Alpha/Beta	Gross Beta	4.90E-14	1.65E-14	1.89E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228188	P6WH LOADOUT	08/24/20	Gross Alpha/Beta	Gross Alpha	1.46E-14	9.13E-15	9.83E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228188	P6WH LOADOUT	08/24/20	Gross Alpha/Beta	Gross Beta	5.98E-14	1.70E-14	1.79E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228189	P6WH LOADOUT	08/25/20	Gross Alpha/Beta	Gross Alpha	1.82E-14	1.05E-14	1.07E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228189	P6WH LOADOUT	08/25/20	Gross Alpha/Beta	Gross Beta	7.33E-14	1.93E-14	1.95E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228190	P6WH LOADOUT	08/25/20	Gross Alpha/Beta	Gross Alpha	1.23E-14	9.04E-15	1.07E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228190	P6WH LOADOUT	08/25/20	Gross Alpha/Beta	Gross Beta	6.65E-14	1.86E-14	1.95E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228191	P6WH LOADOUT	08/25/20	Gross Alpha/Beta	Gross Alpha	1.61E-14	9.64E-15	1.01E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228191	P6WH LOADOUT	08/25/20	Gross Alpha/Beta	Gross Beta	5.85E-14	1.72E-14	1.84E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228192	P6WH LOADOUT	08/26/20	Gross Alpha/Beta	Gross Beta	2.40E-14	1.45E-14	2.00E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228192	P6WH LOADOUT	08/26/20	Gross Alpha/Beta	Gross Alpha	5.43E-15	7.13E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228193	P6WH LOADOUT	08/26/20	Gross Alpha/Beta	Gross Alpha	3.06E-15	6.35E-15	1.12E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228193	P6WH LOADOUT	08/26/20	Gross Alpha/Beta	Gross Beta	1.57E-14	1.36E-14	2.03E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228194	P6WH LOADOUT	08/26/20	Gross Alpha/Beta	Gross Alpha	5.74E-16	4.98E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228194	P6WH LOADOUT	08/26/20	Gross Alpha/Beta	Gross Beta	1.47E-14	1.28E-14	1.90E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228195	P6WH LOADOUT	08/27/20	Gross Alpha/Beta	Gross Beta	2.86E-14	1.44E-14	1.90E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228195	P6WH LOADOUT	08/27/20	Gross Alpha/Beta	Gross Alpha	-1.71E-15	3.76E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228196	P6WH LOADOUT	08/27/20	Gross Alpha/Beta	Gross Alpha	9.08E-15	8.41E-15	1.12E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228196	P6WH LOADOUT	08/27/20	Gross Alpha/Beta	Gross Beta	1.93E-14	1.70E-14	2.51E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228196	P6WH LOADOUT	08/27/20	Gross Alpha/Beta	Gross Beta	3.17E-14	1.82E-14	2.51E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228196	P6WH LOADOUT	08/27/20	Gross Alpha/Beta	Gross Alpha	7.93E-15	8.08E-15	1.12E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228197	P6WH LOADOUT	08/27/20	Gross Alpha/Beta	Gross Alpha	1.06E-14	9.07E-15	1.17E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228197	P6WH LOADOUT	08/27/20	Gross Alpha/Beta	Gross Beta	2.33E-14	1.80E-14	2.61E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228198	P6WH LOADOUT	08/31/20	Gross Alpha/Beta	Gross Beta	2.68E-14	1.72E-14	2.42E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228198	P6WH LOADOUT	08/31/20	Gross Alpha/Beta	Gross Alpha	-1.86E-16	5.04E-15	1.08E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228199	P6WH LOADOUT	08/31/20	Gross Alpha/Beta	Gross Beta	2.80E-14	1.72E-14	2.40E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228199	P6WH LOADOUT	08/31/20	Gross Alpha/Beta	Gross Alpha	3.14E-15	6.30E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228200	P6WH LOADOUT	08/31/20	Gross Alpha/Beta	Gross Beta	4.10E-14	1.77E-14	2.30E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228200	P6WH LOADOUT	08/31/20	Gross Alpha/Beta	Gross Alpha	4.07E-15	6.40E-15	1.03E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228201	P6WH LOADOUT	09/01/20	Gross Alpha/Beta	Gross Alpha	7.89E-15	8.04E-15	1.12E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228201	P6WH LOADOUT	09/01/20	Gross Alpha/Beta	Gross Beta	2.08E-14	1.71E-14	2.50E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228202	P6WH LOADOUT	09/01/20	Gross Alpha/Beta	Gross Beta	2.64E-14	1.74E-14	2.46E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228202	P6WH LOADOUT	09/01/20	Gross Alpha/Beta	Gross Alpha	-1.32E-15	4.58E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228203	P6WH LOADOUT	09/01/20	Gross Alpha/Beta	Gross Beta	2.79E-14	1.67E-14	2.33E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228203	P6WH LOADOUT	09/01/20	Gross Alpha/Beta	Gross Alpha	8.95E-16	5.30E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228204	P6WH LOADOUT	09/02/20	Gross Alpha/Beta	Gross Alpha	3.21E-15	6.44E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228204	P6WH LOADOUT	09/02/20	Gross Alpha/Beta	Gross Beta	2.11E-14	1.68E-14	2.46E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228205	P6WH LOADOUT	09/02/20	Gross Alpha/Beta	Gross Beta	3.87E-14	1.86E-14	2.47E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228205	P6WH LOADOUT	09/02/20	Gross Alpha/Beta	Gross Alpha	6.64E-15	7.59E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228206	P6WH LOADOUT	09/02/20	Gross Alpha/Beta	Gross Alpha	3.03E-15	6.08E-15	1.04E-14	μCi/mL		T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228206	P6WH LOADOUT	09/02/20	Gross Alpha/Beta	Gross Beta	1.92E-14	1.58E-14	2.32E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228207	P6WH LOADOUT	09/03/20	Gross Alpha/Beta	Gross Beta	5.40E-14	2.11E-14	2.66E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228207	P6WH LOADOUT	09/03/20	Gross Alpha/Beta	Gross Alpha	9.62E-15	8.91E-15	1.19E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228208	P6WH LOADOUT	09/03/20	Gross Alpha/Beta	Gross Beta	4.27E-14	1.99E-14	2.62E-14	μCi/mL	=	101,103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228208	P6WH LOADOUT	09/03/20	Gross Alpha/Beta	Gross Alpha	8.27E-15	8.43E-15	1.17E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228209	P6WH LOADOUT	09/03/20	Gross Alpha/Beta	Gross Beta	4.55E-14	1.87E-14	2.39E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228209	P6WH LOADOUT	09/03/20	Gross Alpha/Beta	Gross Alpha	7.54E-15	7.68E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228210	P6WH LOADOUT	09/08/20	Gross Alpha/Beta	Gross Beta	4.49E-14	1.89E-14	2.43E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228210 SLD228210	P6WH LOADOUT	09/08/20	Gross Alpha/Beta	Gross Alpha	4.31E-15	6.77E-15	1.09E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228210 SLD228211	P6WH LOADOUT	09/08/20	Gross Alpha/Beta	Gross Beta	5.63E-14	1.96E-14	2.38E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228211	P6WH LOADOUT	09/08/20	Gross Alpha/Beta	Gross Alpha	9.15E-16	5.41E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228211 SLD228212	P6WH LOADOUT	09/08/20	Gross Alpha/Beta	Gross Beta	4.38E-14	1.82E-14	2.34E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228212 SLD228212	P6WH LOADOUT	09/08/20	Gross Alpha/Beta	Gross Alpha	3.06E-15	6.14E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228212 SLD228213	P6WH LOADOUT	09/09/20	Gross Alpha/Beta	Gross Beta	3.52E-14	1.75E-14	2.34E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228213 SLD228213	P6WH LOADOUT	09/09/20	•		8.99E-16	5.32E-15	1.05E-14	<u> </u>	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD226213	FOWIT LUADUU I	03/03/20	Gross Alpha/Beta	Gross Alpha	0.77E-10	J.34E-13	1.03E-14	μCi/mL	UJ	100	Tiani own Loadoot (General Area)-retimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228214	P6WH LOADOUT	09/09/20	Gross Alpha/Beta	Gross Beta	2.90E-14	1.70E-14	2.36E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228214	P6WH LOADOUT	09/09/20	Gross Alpha/Beta	Gross Alpha	3.08E-15	6.19E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228215	P6WH LOADOUT	09/09/20	Gross Alpha/Beta	Gross Beta	3.67E-14	1.79E-14	2.39E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228215	P6WH LOADOUT	09/09/20	Gross Alpha/Beta	Gross Alpha	5.33E-15	7.01E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228216	P6WH LOADOUT	09/10/20	Gross Alpha/Beta	Gross Beta	3.48E-14	1.62E-14	2.27E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228216	P6WH LOADOUT	09/10/20	Gross Alpha/Beta	Gross Alpha	4.30E-15	6.24E-15	9.58E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228216	P6WH LOADOUT	09/10/20	Gross Alpha/Beta	Gross Alpha	1.09E-14	8.27E-15	9.58E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228216	P6WH LOADOUT	09/10/20	Gross Alpha/Beta	Gross Beta	4.80E-14	1.75E-14	2.27E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228217	P6WH LOADOUT	09/10/20	Gross Alpha/Beta	Gross Alpha	9.71E-15	7.90E-15	9.49E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228217	P6WH LOADOUT	09/10/20	Gross Alpha/Beta	Gross Beta	4.90E-14	1.75E-14	2.25E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228218	P6WH LOADOUT	09/10/20	Gross Alpha/Beta	Gross Alpha	9.71E-15	7.90E-15	9.49E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228218	P6WH LOADOUT	09/10/20	Gross Alpha/Beta	Gross Beta	5.26E-14	1.79E-14	2.25E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228219	P6WH LOADOUT	09/14/20	Gross Alpha/Beta	Gross Beta	3.38E-14	1.60E-14	2.25E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228219	P6WH LOADOUT	09/14/20	Gross Alpha/Beta	Gross Alpha	-2.27E-15	3.13E-15	9.49E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228220	P6WH LOADOUT	09/14/20	Gross Alpha/Beta	Gross Alpha	8.54E-15	7.52E-15	9.41E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228220	P6WH LOADOUT	09/14/20	Gross Alpha/Beta	Gross Beta	2.20E-14	1.47E-14	2.23E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228221	P6WH LOADOUT	09/14/20	Gross Alpha/Beta	Gross Beta	3.57E-14	1.64E-14	2.28E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228221	P6WH LOADOUT	09/14/20	Gross Alpha/Beta	Gross Alpha	4.32E-15	6.27E-15	9.62E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228222	P6WH LOADOUT	09/15/20	Gross Alpha/Beta	Gross Beta	5.17E-14	1.85E-14	2.37E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228222	P6WH LOADOUT	09/15/20	Gross Alpha/Beta	Gross Alpha	2.20E-15	5.66E-15	1.00E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228223	P6WH LOADOUT	09/15/20	Gross Alpha/Beta	Gross Beta	4.58E-14	1.76E-14	2.31E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228223	P6WH LOADOUT	09/15/20	Gross Alpha/Beta	Gross Alpha	5.50E-15	6.74E-15	9.75E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228224	P6WH LOADOUT	09/15/20	Gross Alpha/Beta	Gross Beta	5.02E-14	1.76E-14	2.24E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228224	P6WH LOADOUT	09/15/20	Gross Alpha/Beta	Gross Alpha	6.41E-15	6.89E-15	9.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228225	P6WH LOADOUT	09/16/20	Gross Alpha/Beta	Gross Beta	6.42E-14	1.90E-14	2.25E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228225	P6WH LOADOUT	09/16/20	Gross Alpha/Beta	Gross Alpha	7.53E-15	7.26E-15	9.49E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228226	P6WH LOADOUT	09/16/20	Gross Alpha/Beta	Gross Alpha	1.71E-14	1.01E-14	9.97E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228226	P6WH LOADOUT	09/16/20	Gross Alpha/Beta	Gross Beta	5.53E-14	1.88E-14	2.36E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228227	P6WH LOADOUT	09/16/20	Gross Alpha/Beta	Gross Beta	5.81E-14	1.94E-14	2.42E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228227	P6WH LOADOUT	09/16/20	Gross Alpha/Beta	Gross Alpha	2.24E-15	5.77E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228228	P6WH LOADOUT	09/17/20	Gross Alpha/Beta	Gross Beta	4.84E-14	1.77E-14	2.29E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228228	P6WH LOADOUT	09/17/20	Gross Alpha/Beta	Gross Alpha	4.34E-15	6.30E-15	9.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228229	P6WH LOADOUT	09/17/20	Gross Alpha/Beta	Gross Alpha	1.20E-14	8.56E-15	9.58E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228229	P6WH LOADOUT	09/17/20	Gross Alpha/Beta	Gross Beta	8.30E-14	2.08E-14	2.27E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228230	P6WH LOADOUT	09/17/20	Gross Alpha/Beta	Gross Alpha	1.89E-14	1.00E-14	9.21E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228230	P6WH LOADOUT	09/17/20	Gross Alpha/Beta	Gross Beta	8.13E-14	2.01E-14	2.18E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228231	P6WH LOADOUT	09/21/20	Gross Alpha/Beta	Gross Beta	6.85E-14	2.01E-14	2.37E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228231	P6WH LOADOUT	09/21/20	Gross Alpha/Beta	Gross Alpha	7.95E-15	7.66E-15	1.00E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228232	P6WH LOADOUT	09/21/20	Gross Alpha/Beta	Gross Beta	6.26E-14	1.94E-14	2.35E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228232	P6WH LOADOUT	09/21/20	Gross Alpha/Beta	Gross Alpha	4.46E-15	6.47E-15	9.93E-15	μCi/mL	UJ	Т06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228233	P6WH LOADOUT	09/21/20	Gross Alpha/Beta	Gross Beta	5.31E-14	1.79E-14	2.24E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228233	P6WH LOADOUT	09/21/20	Gross Alpha/Beta	Gross Alpha	5.33E-15	6.54E-15	9.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228234	P6WH LOADOUT	09/22/20	Gross Alpha/Beta	Gross Alpha	1.43E-14	9.21E-15	9.66E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228234	P6WH LOADOUT	09/22/20	Gross Alpha/Beta	Gross Beta	4.54E-14	1.74E-14	2.29E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228235	P6WH LOADOUT	09/22/20	Gross Alpha/Beta	Gross Beta	4.78E-14	1.73E-14	2.23E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228235	P6WH LOADOUT	09/22/20	Gross Alpha/Beta	Gross Alpha	5.31E-15	6.51E-15	9.41E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228236	P6WH LOADOUT	09/22/20	Gross Alpha/Beta	Gross Alpha	1.07E-14	7.74E-15	8.31E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228236	P6WH LOADOUT	09/22/20	Gross Alpha/Beta	Gross Beta	2.52E-14	1.42E-14	1.77E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228236	P6WH LOADOUT	09/22/20	Gross Alpha/Beta	Gross Beta	3.56E-14	1.54E-14	1.77E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228236	P6WH LOADOUT	09/22/20	Gross Alpha/Beta	Gross Alpha	7.26E-15	6.60E-15	8.31E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228237	P6WH LOADOUT	09/23/20	Gross Alpha/Beta	Gross Beta	2.18E-14	1.40E-14	1.81E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228237	P6WH LOADOUT	09/23/20	Gross Alpha/Beta	Gross Alpha	-8.65E-16	2.45E-15	8.47E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228238	P6WH LOADOUT	09/23/20	Gross Alpha/Beta	Gross Beta	2.77E-14	1.38E-14	1.66E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228238	P6WH LOADOUT	09/23/20	Gross Alpha/Beta	Gross Alpha	2.89E-16	3.12E-15	7.78E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228239	P6WH LOADOUT	09/23/20	Gross Alpha/Beta	Gross Alpha	-2.03E-15	6.66E-16	8.39E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228239	P6WH LOADOUT	09/23/20	Gross Alpha/Beta	Gross Beta	1.33E-14	1.29E-14	1.79E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228240	P6WH LOADOUT	09/24/20	Gross Alpha/Beta	Gross Alpha	3.93E-15	5.42E-15	8.63E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228240	P6WH LOADOUT	09/24/20	Gross Alpha/Beta	Gross Beta	1.37E-14	1.33E-14	1.84E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228241	P6WH LOADOUT	09/24/20	Gross Alpha/Beta	Gross Beta	2.12E-14	1.37E-14	1.76E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228241	P6WH LOADOUT	09/24/20	Gross Alpha/Beta	Gross Alpha	2.60E-15	4.64E-15	8.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228242	P6WH LOADOUT	09/24/20	Gross Alpha/Beta	Gross Alpha	3.51E-15	4.85E-15	7.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228242	P6WH LOADOUT	09/24/20	Gross Alpha/Beta	Gross Beta	1.43E-14	1.21E-14	1.65E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228243	P6WH LOADOUT	09/28/20	Gross Alpha/Beta	Gross Beta	2.25E-14	1.30E-14	1.63E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228243	P6WH LOADOUT	09/28/20	Gross Alpha/Beta	Gross Alpha	2.42E-15	4.31E-15	7.65E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228244	P6WH LOADOUT	09/28/20	Gross Alpha/Beta	Gross Alpha	2.57E-15	4.58E-15	8.13E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228244	P6WH LOADOUT	09/28/20	Gross Alpha/Beta	Gross Beta	1.73E-14	1.30E-14	1.73E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228245	P6WH LOADOUT	09/28/20	Gross Alpha/Beta	Gross Beta	5.03E-14	1.69E-14	1.77E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228245	P6WH LOADOUT	09/28/20	Gross Alpha/Beta	Gross Alpha	4.92E-15	5.69E-15	8.27E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228246	P6WH LOADOUT	09/29/20	Gross Alpha/Beta	Gross Beta	6.76E-14	1.81E-14	1.70E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228246	P6WH LOADOUT	09/29/20	Gross Alpha/Beta	Gross Alpha	2.51E-15	4.48E-15	7.95E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228247	P6WH LOADOUT	09/29/20	Gross Alpha/Beta	Gross Beta	4.10E-14	1.56E-14	1.72E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228247	P6WH LOADOUT	09/29/20	Gross Alpha/Beta	Gross Alpha	2.54E-15	4.53E-15	8.06E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228248	P6WH LOADOUT	09/29/20	Gross Alpha/Beta	Gross Beta	3.70E-14	1.53E-14	1.73E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228248	P6WH LOADOUT	09/29/20	Gross Alpha/Beta	Gross Alpha	5.96E-15	6.04E-15	8.13E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228249	P6WH LOADOUT	09/30/20	Gross Alpha/Beta	Gross Alpha	8.12E-15	6.75E-15	8.02E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228249	P6WH LOADOUT	09/30/20	Gross Alpha/Beta	Gross Beta	4.44E-14	1.59E-14	1.71E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228250	P6WH LOADOUT	09/30/20	Gross Alpha/Beta	Gross Alpha	8.23E-15	6.84E-15	8.13E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228250	P6WH LOADOUT	09/30/20	Gross Alpha/Beta	Gross Beta	3.26E-14	1.48E-14	1.73E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228251	P6WH LOADOUT	09/30/20	Gross Alpha/Beta	Gross Alpha	9.66E-15	7.45E-15	8.39E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228251	P6WH LOADOUT	09/30/20	Gross Alpha/Beta	Gross Beta	4.50E-14	1.65E-14	1.79E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228252	P6WH LOADOUT	10/01/20	Gross Alpha/Beta	Gross Beta	3.05E-14	2.06E-14	2.32E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228252	P6WH LOADOUT	10/01/20	Gross Alpha/Beta	Gross Alpha	8.85E-15	7.77E-15	9.75E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228252	P6WH LOADOUT	10/01/20	Gross Alpha/Beta	Gross Alpha	1.22E-14	8.70E-15	9.75E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228252	P6WH LOADOUT	10/01/20	Gross Alpha/Beta	Gross Beta	2.83E-14	2.04E-14	2.32E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228253	P6WH LOADOUT	10/01/20	Gross Alpha/Beta	Gross Alpha	5.22E-15	6.37E-15	9.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228253	P6WH LOADOUT	10/01/20	Gross Alpha/Beta	Gross Beta	2.12E-14	1.89E-14	2.20E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228254	P6WH LOADOUT	10/01/20	Gross Alpha/Beta	Gross Beta	2.94E-14	1.94E-14	2.18E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228254	P6WH LOADOUT	10/01/20	Gross Alpha/Beta	Gross Alpha	7.27E-15	6.99E-15	9.17E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228255	P6WH LOADOUT	10/05/20	Gross Alpha/Beta	Gross Beta	3.06E-14	2.02E-14	2.27E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228255	P6WH LOADOUT	10/05/20	Gross Alpha/Beta	Gross Alpha	6.47E-15	6.93E-15	9.53E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228256	P6WH LOADOUT	10/05/20	Gross Alpha/Beta	Gross Alpha	9.66E-15	7.84E-15	9.45E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228256	P6WH LOADOUT	10/05/20	Gross Alpha/Beta	Gross Beta	1.52E-14	1.88E-14	2.25E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228257	P6WH LOADOUT	10/05/20	Gross Alpha/Beta	Gross Alpha	-1.22E-15	3.89E-15	9.79E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228257	P6WH LOADOUT	10/05/20	Gross Alpha/Beta	Gross Beta	1.50E-14	1.94E-14	2.33E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228258	P6WH LOADOUT	10/06/20	Gross Alpha/Beta	Gross Beta	2.54E-14	2.03E-14	2.33E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228258	P6WH LOADOUT	10/06/20	Gross Alpha/Beta	Gross Alpha	6.64E-15	7.11E-15	9.79E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228259	P6WH LOADOUT	10/06/20	Gross Alpha/Beta	Gross Alpha	9.58E-15	7.77E-15	9.37E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228259	P6WH LOADOUT	10/06/20	Gross Alpha/Beta	Gross Beta	4.51E-14	2.10E-14	2.23E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228260	P6WH LOADOUT	10/06/20	Gross Alpha/Beta	Gross Alpha	1.48E-14	9.09E-15	9.29E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228260	P6WH LOADOUT	10/06/20	Gross Alpha/Beta	Gross Beta	4.96E-14	2.12E-14	2.21E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228261	P6WH LOADOUT	10/07/20	Gross Alpha/Beta	Gross Alpha	1.61E-14	9.85E-15	1.01E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228261	P6WH LOADOUT	10/07/20	Gross Alpha/Beta	Gross Beta	5.53E-14	2.31E-14	2.39E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228262	P6WH LOADOUT	10/07/20	Gross Alpha/Beta	Gross Beta	6.22E-14	2.30E-14	2.31E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228262	P6WH LOADOUT	10/07/20	Gross Alpha/Beta	Gross Alpha	8.81E-15	7.73E-15	9.70E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228263	P6WH LOADOUT	10/07/20	Gross Alpha/Beta	Gross Alpha	1.28E-14	8.60E-15	9.33E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228263	P6WH LOADOUT	10/07/20	Gross Alpha/Beta	Gross Beta	5.98E-14	2.21E-14	2.22E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228264	P6WH LOADOUT	10/08/20	Gross Alpha/Beta	Gross Beta	5.85E-14	2.36E-14	2.43E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228264	P6WH LOADOUT	10/08/20	Gross Alpha/Beta	Gross Alpha	6.93E-15	7.42E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228265	P6WH LOADOUT	10/08/20	Gross Alpha/Beta	Gross Beta	3.57E-14	2.10E-14	2.32E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228265	P6WH LOADOUT	10/08/20	Gross Alpha/Beta	Gross Alpha	7.73E-15	7.43E-15	9.75E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228266	P6WH LOADOUT	10/08/20	Gross Alpha/Beta	Gross Beta	5.27E-14	2.18E-14	2.25E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228266	P6WH LOADOUT	10/08/20	Gross Alpha/Beta	Gross Alpha	6.41E-15	6.87E-15	9.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228267	P6WH LOADOUT	10/12/20	Gross Alpha/Beta	Gross Alpha	6.64E-15	7.11E-15	9.79E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228267	P6WH LOADOUT	10/12/20	Gross Alpha/Beta	Gross Beta	1.72E-14	1.96E-14	2.33E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228268	P6WH LOADOUT	10/12/20	Gross Alpha/Beta	Gross Alpha	9.93E-16	4.84E-15	9.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228268	P6WH LOADOUT	10/12/20	Gross Alpha/Beta	Gross Beta	1.52E-14	1.88E-14	2.25E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228269	P6WH LOADOUT	10/12/20	Gross Alpha/Beta	Gross Alpha	2.00E-15	5.11E-15	9.09E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228269	P6WH LOADOUT	10/12/20	Gross Alpha/Beta	Gross Beta	1.18E-14	1.79E-14	2.16E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228270	P6WH LOADOUT	10/13/20	Gross Alpha/Beta	Gross Alpha	1.35E-14	1.18E-14	1.48E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228270	P6WH LOADOUT	10/13/20	Gross Alpha/Beta	Gross Beta	3.40E-14	3.03E-14	3.53E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228271	P6WH LOADOUT	10/13/20	Gross Alpha/Beta	Gross Beta	3.50E-14	2.95E-14	3.41E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228271	P6WH LOADOUT	10/13/20	Gross Alpha/Beta	Gross Alpha	6.44E-15	9.30E-15	1.43E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228272	P6WH LOADOUT	10/13/20	Gross Alpha/Beta	Gross Alpha	1.11E-14	1.08E-14	1.23E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228272	P6WH LOADOUT	10/13/20	Gross Alpha/Beta	Gross Beta	1.19E-14	1.73E-14	2.59E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228272	P6WH LOADOUT	10/13/20	Gross Alpha/Beta	Gross Alpha	6.29E-15	9.19E-15	1.23E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228272	P6WH LOADOUT	10/13/20	Gross Alpha/Beta	Gross Beta	2.54E-14	1.89E-14	2.59E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228273	P6WH LOADOUT	10/14/20	Gross Alpha/Beta	Gross Beta	2.68E-14	1.44E-14	1.84E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228273	P6WH LOADOUT	10/14/20	Gross Alpha/Beta	Gross Alpha	5.59E-15	6.90E-15	8.70E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228274	P6WH LOADOUT	10/14/20	Gross Alpha/Beta	Gross Beta	2.77E-14	1.43E-14	1.80E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228274	P6WH LOADOUT	10/14/20	Gross Alpha/Beta	Gross Alpha	5.49E-15	6.78E-15	8.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228275	P6WH LOADOUT	10/14/20	Gross Alpha/Beta	Gross Beta	2.72E-14	1.37E-14	1.72E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228275	P6WH LOADOUT	10/14/20	Gross Alpha/Beta	Gross Alpha	7.37E-15	7.14E-15	8.15E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228276	P6WH LOADOUT	10/15/20	Gross Alpha/Beta	Gross Alpha	3.33E-15	6.12E-15	8.74E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228276	P6WH LOADOUT	10/15/20	Gross Alpha/Beta	Gross Beta	1.36E-14	1.29E-14	1.84E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228277	P6WH LOADOUT	10/15/20	Gross Alpha/Beta	Gross Alpha	6.88E-15	7.44E-15	8.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228277	P6WH LOADOUT	10/15/20	Gross Alpha/Beta	Gross Beta	1.69E-14	1.35E-14	1.88E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228278	P6WH LOADOUT	10/15/20	Gross Alpha/Beta	Gross Alpha	8.40E-15	7.43E-15	8.11E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228278	P6WH LOADOUT	10/15/20	Gross Alpha/Beta	Gross Beta	2.29E-14	1.32E-14	1.71E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228279	P6WH LOADOUT	10/19/20	Gross Alpha/Beta	Gross Beta	3.52E-14	1.49E-14	1.78E-14	μCi/mL	=	·	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228279	P6WH LOADOUT	10/19/20	Gross Alpha/Beta	Gross Alpha	-9.20E-17	4.51E-15	8.43E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228280	P6WH LOADOUT	10/19/20	Gross Alpha/Beta	Gross Beta	2.40E-14	1.38E-14	1.80E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228280	P6WH LOADOUT	10/19/20	Gross Alpha/Beta	Gross Alpha	2.13E-15	5.53E-15	8.51E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228281	P6WH LOADOUT	10/19/20	Gross Alpha/Beta	Gross Alpha	1.42E-14	9.15E-15	8.40E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228281	P6WH LOADOUT	10/19/20	Gross Alpha/Beta	Gross Beta	3.79E-14	1.52E-14	1.77E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228282	P6WH LOADOUT	10/20/20	Gross Alpha/Beta	Gross Alpha	1.16E-14	8.88E-15	8.98E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228282	P6WH LOADOUT	10/20/20	Gross Alpha/Beta	Gross Beta	4.05E-14	1.62E-14	1.90E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228283	P6WH LOADOUT	10/20/20	Gross Alpha/Beta	Gross Beta	3.55E-14	1.55E-14	1.87E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228283	P6WH LOADOUT	10/20/20	Gross Alpha/Beta	Gross Alpha	5.69E-15	7.03E-15	8.86E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228284	P6WH LOADOUT	10/20/20	Gross Alpha/Beta	Gross Beta	2.73E-14	1.37E-14	1.73E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228284	P6WH LOADOUT	10/20/20	Gross Alpha/Beta	Gross Alpha	3.12E-15	5.74E-15	8.18E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228285	P6WH LOADOUT	10/21/20	Gross Alpha/Beta	Gross Beta	4.07E-14	1.68E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228285	P6WH LOADOUT	10/21/20	Gross Alpha/Beta	Gross Alpha	4.80E-15	7.01E-15	9.37E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228286	P6WH LOADOUT	10/21/20	Gross Alpha/Beta	Gross Beta	3.28E-14	1.53E-14	1.89E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228286	P6WH LOADOUT	10/21/20	Gross Alpha/Beta	Gross Alpha	6.91E-15	7.47E-15	8.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228287	P6WH LOADOUT	10/21/20	Gross Alpha/Beta	Gross Beta	4.37E-14	1.58E-14	1.78E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228287	P6WH LOADOUT	10/21/20	Gross Alpha/Beta	Gross Alpha	6.52E-15	7.05E-15	8.43E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228288	P6WH LOADOUT	10/22/20	Gross Alpha/Beta	Gross Beta	2.44E-14	1.44E-14	1.88E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228288	P6WH LOADOUT	10/22/20	Gross Alpha/Beta	Gross Alpha	6.88E-15	7.44E-15	8.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228289	P6WH LOADOUT	10/22/20	Gross Alpha/Beta	Gross Beta	2.15E-14	1.41E-14	1.89E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228289	P6WH LOADOUT	10/22/20	Gross Alpha/Beta	Gross Alpha	4.58E-15	6.69E-15	8.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228290	P6WH LOADOUT	10/22/20	Gross Alpha/Beta	Gross Beta	2.64E-14	1.39E-14	1.77E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228290	P6WH LOADOUT	10/22/20	Gross Alpha/Beta	Gross Alpha	7.56E-15	7.33E-15	8.36E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228291	P6WH LOADOUT	10/26/20	Gross Alpha/Beta	Gross Beta	4.98E-14	1.87E-14	2.13E-14	μCi/mL	=	,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228291	P6WH LOADOUT	10/26/20	Gross Alpha/Beta	Gross Alpha	7.81E-15	8.44E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228292	P6WH LOADOUT	10/26/20	Gross Alpha/Beta	Gross Beta	3.11E-14	1.39E-14	1.72E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228292	P6WH LOADOUT	10/26/20	Gross Alpha/Beta	Gross Alpha	9.10E-15	7.40E-15	9.24E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228292	P6WH LOADOUT	10/26/20	Gross Alpha/Beta	Gross Beta	3.11E-14	1.39E-14	1.72E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228292	P6WH LOADOUT	10/26/20	Gross Alpha/Beta	Gross Alpha	6.89E-15	6.70E-15	9.24E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228293	P6WH LOADOUT	10/26/20	Gross Alpha/Beta	Gross Beta	2.19E-14	1.36E-14	1.85E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228293	P6WH LOADOUT	10/26/20	Gross Alpha/Beta	Gross Alpha	1.48E-15	4.84E-15	9.93E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228294	P6WH LOADOUT	10/27/20	Gross Alpha/Beta	Gross Beta	2.22E-14	1.34E-14	1.81E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228294	P6WH LOADOUT	10/27/20	Gross Alpha/Beta	Gross Alpha	1.45E-15	4.73E-15	9.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228295	P6WH LOADOUT	10/27/20	Gross Alpha/Beta	Gross Alpha	4.83E-15	6.10E-15	9.53E-15			T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228295	P6WH LOADOUT	10/27/20	Gross Alpha/Beta	Gross Beta	8.56E-15	1.15E-14	1.77E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228296	P6WH LOADOUT	10/27/20	Gross Alpha/Beta	Gross Alpha	1.38E-15	4.51E-15	9.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228296	P6WH LOADOUT	10/27/20	Gross Alpha/Beta	Gross Beta	1.11E-14	1.15E-14	1.72E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228297	P6WH LOADOUT	10/28/20	Gross Alpha/Beta	Gross Beta	3.28E-14	1.58E-14	2.00E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228297	P6WH LOADOUT	10/28/20	Gross Alpha/Beta	Gross Alpha	2.88E-15	5.83E-15	1.07E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228298	P6WH LOADOUT	10/28/20	Gross Alpha/Beta	Gross Beta	3.19E-14	1.48E-14	1.85E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228298	P6WH LOADOUT	10/28/20	Gross Alpha/Beta	Gross Alpha	5.04E-15	6.36E-15	9.93E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228299	P6WH LOADOUT	10/28/20	Gross Alpha/Beta	Gross Beta	3.47E-14	1.46E-14	1.76E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228299	P6WH LOADOUT	10/28/20	Gross Alpha/Beta	Gross Alpha	2.82E-16	4.02E-15	9.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228300	P6WH LOADOUT	10/29/20	Gross Alpha/Beta	Gross Alpha	-1.29E-15	5.09E-15	1.45E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228300	P6WH LOADOUT	10/29/20	Gross Alpha/Beta	Gross Beta	8.53E-15	1.69E-14	2.69E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228301	P6WH LOADOUT	10/29/20	Gross Alpha/Beta	Gross Alpha	1.17E-14	8.33E-15	9.58E-15	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228301	P6WH LOADOUT	10/29/20	Gross Alpha/Beta	Gross Beta	7.20E-14	1.86E-14	1.78E-14	μCi/mL	=	101, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228302	P6WH LOADOUT	10/29/20	Gross Alpha/Beta	Gross Alpha	1.95E-14	1.03E-14	9.49E-15	μCi/mL	ī	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228302 SLD228302	P6WH LOADOUT	10/29/20	Gross Alpha/Beta	Gross Beta	6.91E-14	1.82E-14	1.77E-14	μCi/mL	=	107, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
3LD440304	TUWII LUADUU I	10/27/20	Oross Aipiia/Beta	Oross Deta	0.71E-14	1.04E-14	1.//E-14	μCI/IIIL			Train UWIT LOADOUT (Oblictal Alea)-Fellinetel Alf

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228303	P6WH LOADOUT	11/02/20	Gross Alpha/Beta	Gross Beta	2.74E-14	1.35E-14	1.71E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228303	P6WH LOADOUT	11/02/20	Gross Alpha/Beta	Gross Alpha	2.47E-15	5.00E-15	9.20E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228304	P6WH LOADOUT	11/02/20	Gross Alpha/Beta	Gross Beta	5.68E-14	1.73E-14	1.82E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228304	P6WH LOADOUT	11/02/20	Gross Alpha/Beta	Gross Alpha	2.91E-16	4.15E-15	9.75E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228305	P6WH LOADOUT	11/02/20	Gross Alpha/Beta	Gross Beta	4.80E-14	1.64E-14	1.82E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228305	P6WH LOADOUT	11/02/20	Gross Alpha/Beta	Gross Alpha	4.97E-15	6.27E-15	9.80E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228306	P6WH LOADOUT	11/03/20	Gross Alpha/Beta	Gross Alpha	2.64E-15	5.34E-15	9.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228306	P6WH LOADOUT	11/03/20	Gross Alpha/Beta	Gross Beta	8.08E-15	1.18E-14	1.83E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228307	P6WH LOADOUT	11/03/20	Gross Alpha/Beta	Gross Beta	4.87E-14	1.72E-14	1.94E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228307	P6WH LOADOUT	11/03/20	Gross Alpha/Beta	Gross Alpha	3.11E-16	4.43E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228308	P6WH LOADOUT	11/03/20	Gross Alpha/Beta	Gross Beta	3.71E-14	1.58E-14	1.92E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228308	P6WH LOADOUT	11/03/20	Gross Alpha/Beta	Gross Alpha	8.92E-15	7.88E-15	1.03E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228309	P6WH LOADOUT	11/04/20	Gross Alpha/Beta	Gross Alpha	1.87E-14	1.02E-14	9.66E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228309	P6WH LOADOUT	11/04/20	Gross Alpha/Beta	Gross Beta	5.70E-14	1.72E-14	1.80E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228310	P6WH LOADOUT	11/04/20	Gross Alpha/Beta	Gross Beta	3.68E-14	1.46E-14	1.72E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228310	P6WH LOADOUT	11/04/20	Gross Alpha/Beta	Gross Alpha	9.10E-15	7.40E-15	9.24E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228311	P6WH LOADOUT	11/04/20	Gross Alpha/Beta	Gross Beta	5.73E-14	1.73E-14	1.81E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228311	P6WH LOADOUT	11/04/20	Gross Alpha/Beta	Gross Alpha	7.24E-15	7.03E-15	9.71E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD228332	P6WH LOADOUT	11/17/20	Gross Alpha/Beta	Gross Beta	2.78E-14	1.51E-14	2.20E-14	μCi/mL		·	Plant 6WH (General Area)-Perimeter Air
SLD228332	P6WH LOADOUT	11/17/20	Gross Alpha/Beta	Gross Alpha	1.81E-16	5.88E-15	1.02E-14	μCi/mL			Plant 6WH (General Area)-Perimeter Air
SLD228332	P6WH LOADOUT	11/17/20	Gross Alpha/Beta	Gross Beta	2.56E-14	1.49E-14	2.20E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD228332	P6WH LOADOUT	11/17/20	Gross Alpha/Beta	Gross Alpha	3.43E-15	6.98E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD228333	P6WH LOADOUT	11/18/20	Gross Alpha/Beta	Gross Beta	2.55E-14	1.45E-14	2.12E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD228333	P6WH LOADOUT	11/18/20	Gross Alpha/Beta	Gross Alpha	2.27E-15	6.41E-15	9.85E-15	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD228334	P6WH LOADOUT	11/18/20	Gross Alpha/Beta	Gross Beta	2.29E-14	1.47E-14	2.21E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD228334	P6WH LOADOUT	11/18/20	Gross Alpha/Beta	Gross Alpha	2.37E-15	6.70E-15	1.03E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD228335	P6WH LOADOUT	11/18/20	Gross Alpha/Beta	Gross Beta	2.43E-14	1.52E-14	2.27E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD228335	P6WH LOADOUT	11/18/20	Gross Alpha/Beta	Gross Alpha	1.87E-16	6.10E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD228336	P6WH LOADOUT	11/19/20	Gross Alpha/Beta	Gross Beta	2.77E-14	1.51E-14	2.19E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD228336	P6WH LOADOUT	11/19/20	Gross Alpha/Beta	Gross Alpha	4.50E-15	7.28E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD228337	P6WH LOADOUT	11/19/20	Gross Alpha/Beta	Gross Beta	2.77E-14	1.54E-14	2.24E-14	μCi/mL	J	T04, T20	Plant 6WH (General Area)-Perimeter Air
SLD228337	P6WH LOADOUT	11/19/20	Gross Alpha/Beta	Gross Alpha	3.51E-15	7.14E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD228338	P6WH LOADOUT	11/19/20	Gross Alpha/Beta	Gross Alpha	3.57E-15	7.27E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD228338	P6WH LOADOUT	11/19/20	Gross Alpha/Beta	Gross Beta	1.77E-14	1.45E-14	2.29E-14	μCi/mL	UJ	T04, T05	Plant 6WH (General Area)-Perimeter Air
SLD228339	P6WH LOADOUT	11/23/20	Gross Alpha/Beta	Gross Beta	5.43E-14	1.68E-14	2.03E-14	μCi/mL	=	,	Plant 6WH (General Area)-Perimeter Air
SLD228339	P6WH LOADOUT	11/23/20	Gross Alpha/Beta	Gross Alpha	2.17E-15	6.13E-15	9.42E-15	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD228340	P6WH LOADOUT	11/24/20	Gross Alpha/Beta	Gross Beta	4.18E-14	1.65E-14	2.18E-14	μCi/mL	=		Plant 6WH (General Area)-Perimeter Air
SLD228340	P6WH LOADOUT	11/24/20	Gross Alpha/Beta	Gross Alpha	5.55E-15	7.57E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD228341	P6WH LOADOUT	11/25/20	Gross Alpha/Beta	Gross Alpha	-9.27E-16	5.62E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH (General Area)-Perimeter Air
SLD228341	P6WH LOADOUT	11/25/20	Gross Alpha/Beta	Gross Beta	1.82E-14	1.44E-14	2.25E-14	μCi/mL	UJ	T04, T05	Plant 6WH (General Area)-Perimeter Air
SLD228342	P6WH LOADOUT	11/30/20	Gross Alpha/Beta	Gross Beta	3.43E-14	1.70E-14	2.26E-14	μCi/mL		,	SLDS (General Area)-Perimeter Air
SLD228342	P6WH LOADOUT	11/30/20	Gross Alpha/Beta	Gross Alpha	-1.67E-15	4.75E-15	1.01E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD228342	P6WH LOADOUT	11/30/20	Gross Alpha/Beta	Gross Beta	3.80E-14	1.73E-14	2.26E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228342	P6WH LOADOUT	11/30/20	Gross Alpha/Beta	Gross Alpha	5.01E-15	7.24E-15	1.01E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228343	P6WH LOADOUT	12/01/20	Gross Alpha/Beta	Gross Alpha	1.17E-14	9.09E-15	1.01E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD228343	P6WH LOADOUT	12/01/20	Gross Alpha/Beta	Gross Beta	4.24E-14	1.77E-14	2.26E-14	μCi/mL	=	,	SLDS (General Area)-Perimeter Air
SLD228344	P6WH LOADOUT	12/02/20	Gross Alpha/Beta	Gross Beta	6.51E-14	2.04E-14	2.35E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD228344	P6WH LOADOUT	12/02/20	Gross Alpha/Beta	Gross Alpha	6.38E-15	7.90E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228345	P6WH LOADOUT	12/02/20	Gross Alpha/Beta	Gross Beta	4.57E-14	1.84E-14	2.31E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228345	P6WH LOADOUT	12/02/20	Gross Alpha/Beta	Gross Alpha	7.40E-15	8.08E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228346	P6WH LOADOUT	12/02/20	Gross Alpha/Beta	Gross Beta	5.00E-14	1.81E-14	2.20E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228346	P6WH LOADOUT	12/02/20	Gross Alpha/Beta	Gross Alpha	4.88E-15	7.05E-15	9.88E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD228347	P6WH LOADOUT	12/03/20	Gross Alpha/Beta	Gross Beta	4.98E-14	1.91E-14	2.36E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD228347	P6WH LOADOUT	12/03/20	Gross Alpha/Beta	Gross Alpha	5.24E-15	7.58E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD234216	P6WH LOADOUT	12/03/20	Gross Alpha/Beta	Gross Beta	5.63E-14	1.96E-14	2.34E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234216	P6WH LOADOUT	12/03/20	Gross Alpha/Beta	Gross Alpha	9.81E-15	8.83E-15	1.05E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD234217	P6WH LOADOUT	12/03/20	Gross Alpha/Beta	Gross Alpha	1.24E-14	9.08E-15	9.83E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD234217	P6WH LOADOUT	12/03/20	Gross Alpha/Beta	Gross Beta	6.92E-14	1.98E-14	2.19E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234218	P6WH LOADOUT	12/07/20	Gross Alpha/Beta	Gross Beta	6.10E-14	1.90E-14	2.18E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234218	P6WH LOADOUT	12/07/20	Gross Alpha/Beta	Gross Alpha	4.84E-15	6.99E-15	9.79E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD234219	P6WH LOADOUT	12/08/20	Gross Alpha/Beta	Gross Alpha	2.31E-14	1.17E-14	1.03E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD234219	P6WH LOADOUT	12/08/20	Gross Alpha/Beta	Gross Beta	1.39E-13	2.64E-14	2.29E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234220	P6WH LOADOUT	12/09/20	Gross Alpha/Beta	Gross Beta	9.07E-14	2.24E-14	2.30E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234220	P6WH LOADOUT	12/09/20	Gross Alpha/Beta	Gross Alpha	5.10E-15	7.37E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD234221	P6WH LOADOUT	12/10/20	Gross Alpha/Beta	Gross Alpha	2.25E-14	1.18E-14	1.05E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD234221	P6WH LOADOUT	12/10/20	Gross Alpha/Beta	Gross Beta	1.33E-13	2.63E-14	2.34E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234222	P6WH LOADOUT	12/10/20	Gross Alpha/Beta	Gross Alpha	1.21E-14	9.39E-15	1.05E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD234222	P6WH LOADOUT	12/10/20	Gross Alpha/Beta	Gross Beta	9.89E-14	2.33E-14	2.33E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234223	P6WH LOADOUT	12/10/20	Gross Alpha/Beta	Gross Beta	4.85E-14	1.80E-14	2.20E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234223	P6WH LOADOUT	12/10/20	Gross Alpha/Beta	Gross Alpha	5.96E-15	7.38E-15	9.88E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD234224	P6WH LOADOUT	12/14/20	Gross Alpha/Beta	Gross Beta	5.63E-14	1.94E-14	2.31E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234224	P6WH LOADOUT	12/14/20	Gross Alpha/Beta	Gross Alpha	5.12E-15	7.41E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD234225	P6WH LOADOUT	12/14/20	Gross Alpha/Beta	Gross Beta	4.48E-14	1.80E-14	2.27E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234225	P6WH LOADOUT	12/14/20	Gross Alpha/Beta	Gross Alpha	7.27E-15	7.94E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD234226	P6WH LOADOUT	12/14/20	Gross Alpha/Beta	Gross Beta	5.08E-14	1.78E-14	2.14E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234226	P6WH LOADOUT	12/14/20	Gross Alpha/Beta	Gross Alpha	5.28E-16	5.41E-15	9.62E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD234227	P6WH LOADOUT	12/15/20	Gross Alpha/Beta	Gross Beta	4.44E-14	1.86E-14	2.36E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234227	P6WH LOADOUT	12/15/20	Gross Alpha/Beta	Gross Alpha	5.83E-16	5.97E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD234228	P6WH LOADOUT	12/15/20	Gross Alpha/Beta	Gross Beta	5.33E-14	1.89E-14	2.28E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234228	P6WH LOADOUT	12/15/20	Gross Alpha/Beta	Gross Alpha	5.61E-16	5.75E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD234229	P6WH LOADOUT	12/15/20	Gross Alpha/Beta	Gross Beta	7.07E-14	1.98E-14	2.17E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD234229	P6WH LOADOUT	12/15/20	Gross Alpha/Beta	Gross Alpha	6.95E-15	7.60E-15	9.75E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD234250	P6WH LOADOUT	12/28/20	Gross Alpha/Beta	Gross Beta	4.52E-14	1.70E-14	2.17E-14	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234250	P6WH LOADOUT	12/28/20	Gross Alpha/Beta	Gross Alpha	7.38E-15	6.83E-15	8.72E-15	μCi/mL			Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234250	P6WH LOADOUT	12/28/20	Gross Alpha/Beta	Gross Alpha	1.05E-14	7.72E-15	8.72E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234250	P6WH LOADOUT	12/28/20	Gross Alpha/Beta	Gross Beta	4.38E-14	1.68E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234251	P6WH LOADOUT	12/29/20	Gross Alpha/Beta	Gross Beta	2.56E-14	1.63E-14	2.38E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234251	P6WH LOADOUT	12/29/20	Gross Alpha/Beta	Gross Alpha	1.89E-16	4.49E-15	9.60E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234252	P6WH LOADOUT	12/29/20	Gross Alpha/Beta	Gross Beta	4.23E-14	1.75E-14	2.31E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234252	P6WH LOADOUT	12/29/20	Gross Alpha/Beta	Gross Alpha	3.48E-15	5.79E-15	9.30E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234253	P6WH LOADOUT	12/29/20	Gross Alpha/Beta	Gross Beta	2.93E-14	1.60E-14	2.26E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234253	P6WH LOADOUT	12/29/20	Gross Alpha/Beta	Gross Alpha	5.55E-15	6.43E-15	9.10E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234254	P6WH LOADOUT	12/30/20	Gross Alpha/Beta	Gross Beta	3.00E-14	1.74E-14	2.50E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234254	P6WH LOADOUT	12/30/20	Gross Alpha/Beta	Gross Alpha	1.98E-16	4.71E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. SLDS Perimeter Air Data Results for CY 2020 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD234255	P6WH LOADOUT	12/30/20	Gross Alpha/Beta	Gross Beta	3.53E-14	1.79E-14	2.49E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234255	P6WH LOADOUT	12/30/20	Gross Alpha/Beta	Gross Alpha	1.38E-15	5.25E-15	1.00E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234256	P6WH LOADOUT	12/30/20	Gross Alpha/Beta	Gross Alpha	1.94E-16	4.62E-15	9.87E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234256	P6WH LOADOUT	12/30/20	Gross Alpha/Beta	Gross Beta	2.09E-14	1.62E-14	2.45E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air

VQs:

- = Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.
- J Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.
- UJ Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate. Validation Reason Codes:
- T04 Radionuclide Quantitation: Professional judgment was used to qualify the data.
- T05 Radionuclide Quantitation: Analytical result is less than the associated MDA, but greater than the counting uncertainty.
- T06 Radionuclide Quantitation: Analytical result is less than both the associated counting uncertainty and MDA.
- T20 Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainty 50 to 100 percent of the result.

Table C-4. SLDS Radon-222 Results for CY 2020

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
HIS228563	BA-1	07/08/20	Radiological	Rn-222	0.11	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2020
HIS237481	BA-1	01/06/21	Radiological	Rn-222	0.14	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2020
SLD228571	DA-3	07/08/20	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2020
SLD237499	DA-3	01/06/21	Radiological	Rn-222	0.14	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2020
SLD228572	DA-8	07/08/20	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2020
SLD237500	DA-8	01/06/21	Radiological	Rn-222	0.14	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2020
SLD228572-1	DA-8 dup	07/08/20	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2020
SLD237500-1	DA-8 dup	01/06/21	Radiological	Rn-222	0.14	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2020
SLD228573	DA-9	07/08/20	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2020
SLD237501	DA-9	01/06/21	Radiological	Rn-222	0.11	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2020
SLD228574	DA-10	07/08/20	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2020
SLD237502	DA-10	01/06/21	Radiological	Rn-222	0.14	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2020
SLD228575	DA-11	07/08/20	Radiological	Rn-222	0.08	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2020
SLD237503	DA-11	01/06/21	Radiological	Rn-222	0.14	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2020
SLD228576	DA-12	07/08/20	Radiological	Rn-222	0.14	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2020
SLD237504	DA-12	01/06/21	Radiological	Rn-222	0.16	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2020
SLD228577	DI-1	07/08/20	Radiological	Rn-222	0.57	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2020
SLD237505	DI-1	01/06/21	Radiological	Rn-222	0.89	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2020
SLD228578	DI-2	07/08/20	Radiological	Rn-222	0.54	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2020
SLD230121	Dl-2	08/24/20	Radiological	Rn-222	0.41	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2020

VOs:

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

UJ - Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate. Validation Reason Code:

Y01 - FUSRAP Only: Not enough supporting documentation to perform validation.

Dt. Louis Downtown Site 7 in	nual Environmental Monitoring Data and Analysis Report for CY 2020	
	THIS PAGE INTENTIONALLY LEFT BLANK	

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020	
APPENDIX D	
	D DATA
STORMWATER, WASTEWATER, AND EXCAVATION WATER	K DATA
(On the CD-ROM on the Back Cover of this Report)	

St. Louis Downtown Site Annual En	vironmental Monitoring Data and Analysis Report for	CY 2020
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THE	S PAGE INTENTIONALLY LEFT B	LANK

Table D-1. Self-Monitoring Report for Excavation Water Discharge at the SLDS During CY 2020 First Quarter

rust Quarter													
Parameter	Batch Number	Date of Discharge		tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b		ischarge mit	SOR				
Gross Alpha (raw water)			75.6	pCi/L		3.6E-05	3,000	pCi/L					
Gross Beta			52.4	pCi/L		2.5E-05	N	ĬΑ	İ				
Th-228	7		<1.8	pCi/L		4.3E-07	2,000	pCi/L					
Th-230		01/00/20 01/27/20	2.40	pCi/L		1.1E-06	1,000	pCi/L	1				
Th-232	SLDS-BK597	01/08/20 - 01/27/20	<1	pCi/L	124,850	2.4E-07	300	pCi/L	0.03				
Uranium (KPA)		(Gunther Salt)	67.5	pCi/L		3.2E-05	3,000	pCi/L	1				
Ra-226 ^c			3.8	pCi/L		1.8E-06	10	pCi/L	1				
Ra-228 ^{d,e}	7		<1.8	pCi/L		4.3E-07	30	pCi/L	1				
TSS	7		55.7	mg/L		-		-	İ				
Gross Alpha (raw water)			128.9	pCi/L		5.4E-05	3,000	pCi/L					
Gross Beta			73.6	pCi/L		3.1E-05	N	ĪA	1				
Th-228			<1.7	pCi/L		3.6E-07	2,000	pCi/L	İ				
Th-230			2.1	pCi/L		8.8E-07	1,000	pCi/L	1				
Th-232	SLDS-BK598	01/10/20 - 01/27/20	<1.3	pCi/L	110,226	2.7E-07	300	pCi/L	0.04				
Uranium (KPA)		(Plant 6WH)	108.8	pCi/L		4.5E-05	3,000	pCi/L	0.04				
Ra-226 ^c			<1.3	pCi/L		2.8E-07	10	pCi/L					
Ra-228 ^{d,e}			<1.7	pCi/L		3.6E-07	30	pCi/L					
TSS			176.1	mg/L		- 3.02 07	30	- PCFE					
Gross Alpha (raw water)			53.8	pCi/L		4.2E-06	3,000	pCi/L					
Gross Beta			28.7	pCi/L	20,650	2.2E-06		IA	0.03				
Th-228			0.6	pCi/L		5.1E-08	2,000	pCi/L					
Th-230			0.9	pCi/L		7.2E-08	1,000	pCi/L					
Th-232	SLDS-BK599	02/03/20 - 02/04/20	<0.4	pCi/L		1.5E-08	300	pCi/L					
Uranium (KPA)	- SLDS-BR377	(Gunther Salt)	51.9	pCi/L	20,030	4.1E-06	3,000	pCi/L					
Ra-226°			51.9 pCi/L 5.5 pCi/L		4.3E-07	10	pCi/L						
Ra-228 ^{d,e}	_			-	ı			0.6	pCi/L	†	5.1E-08	30	pCi/L
TSS	_		37.1	mg/L		3.1E-08		- PC//L					
Gross Alpha (raw water)			75.7	pCi/L		1.3E-05	3,000	pCi/L					
Gross Alpha (raw water) Gross Beta			29.0	pCi/L		5.1E-06		I PC⊬L JA	1				
Th-228			<0.6	pCi/L	46,208	5.4E-08	2,000	pCi/L	0.02				
Th-230			1.4	pCi/L		2.4E-07	1,000	pCi/L					
Th-232	SLDS-BK600	02/11/20 - 02/25/20	<0.3	pCi/L		2.4E-07 2.8E-08	300	pCi/L					
Uranium (KPA)	- SLDS-BROOD	(Plant 6WH)	58.5	pCi/L		1.0E-05	3,000	pCi/L					
· /			<1	pCi/L		9.2E-08	10	pCi/L					
Ra-226 ^c Ra-228 ^{d,e}			<0.6			5.4E-08	30						
TSS				pCi/L		5.4E-08		pCi/L					
			27.1 53.8	mg/L									
Gross Alpha (raw water)				pCi/L		1.4E-05	3,000	pCi/L JA	1				
Gross Beta			25.0	pCi/L	•	6.7E-06			ł				
Th-228	-		<1.5	pCi/L		2.0E-07	2,000	pCi/L	1				
Th-230	CI DC DIZCO1	03/04/20 - 03/23/20	3.3	pCi/L	70.605	8.9E-07	1,000	pCi/L	0.00				
Th-232	SLDS-BK601	(Gunther Salt)	<2.1	pCi/L	70,695	2.8E-07	300	pCi/L	0.02				
Uranium (KPA)	\dashv		38.0	pCi/L		1.0E-05	3,000	pCi/L					
Ra-226 ^c	_		<1.4	pCi/L		1.8E-07	10	pCi/L	1				
Ra-228 ^{d,e}	_		<1.5	pCi/L		2.0E-07	30	pCi/L					
TSS			75.5	mg/L		-		-					

Total Activity Discharged in First Quarter of	CY 2020 (Ci)
	1.15.06

Th-228	1.1E-06
Th-230	3.2E-06
Th-232	8.3E-07
Uranium (KPA)	1.0E-04
Ra-226	2.8E-06
Ra-228 ^d	1.1E-06

Total Volume Discharged in First Quarter of CY 2020 (gallons)

Gallons 372,629

Notes:

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

TSS - total suspended solid(s)

Total Activity Discharged through 03/31/20 (Ci) Th-228 1.1E-06 Th-230 3.2E-06 Th-232

8.3E-07 Uranium (KPA) 1.0E-04 Ra-226 2.8E-06 Ra-228d 1.1E-06

Total Volume Discharged through 03/31/20 (gallons) 372,629 Gallons

^a Non-detect sample results are converted to half the DL.

^b The weighted average was used to calculate the total activity.

 $^{^{\}rm c}$ 10 CFR 20 limit is 600 pCi/L for Ra-226.

 $^{^{\}rm d}$ Ra-228 assumed to be in equilibrium with Th-228.

^e 10 CFR 20 limit is 600 pCi/L for Ra-228.

Table D-1. Self-Monitoring Report for Excavation Water Discharge at the SLDS During CY 2020 (Continued)
Second Quarter

Parameter	Batch Number	Date of Discharge	Res	itch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b	Li	ischarge mit	sor	
Gross Alpha (raw water)			61.7	pCi/L		2.1E-05	3,000	pCi/L		
Gross Beta			34.7	pCi/L		1.2E-05	N	ΙA		
Th-228			<1.1	pCi/L		1.8E-07	2,000	pCi/L		
Th-230		04/16/20 - 04/29/20	< 0.7	pCi/L		1.1E-07	1,000	pCi/L		
Th-232	SLDS-BK602	(Gunther Salt)	<1.1	pCi/L	87,856	1.9E-07	300	pCi/L	0.02	
Uranium (KPA)		(Guilliei Sait)	54.8	pCi/L		1.8E-05	3,000	pCi/L	Ī	
Ra-226 ^c			<1.1	pCi/L		1.9E-07	10	pCi/L		
Ra-228 ^{d,e}			<1.1	pCi/L		1.8E-07	30	pCi/L	1	
TSS			32.9	mg/L		-		-	Ī	
Gross Alpha (raw water)			71.9	pCi/L		2.6E-05	3,000	pCi/L		
Gross Beta			49.2	pCi/L		1.8E-05	N	ΙA	1	
Th-228			< 0.8	pCi/L		1.4E-07	2,000	pCi/L	İ	
Th-230			1.2	pCi/L		4.2E-07	1,000	pCi/L	İ	
Th-232	SLDS-BK603	05/04/20 - 05/28/20	< 0.5	pCi/L	94,756	9.8E-08	300	pCi/L	0.02	
Uranium (KPA)		(Gunther Salt)	61.2	pCi/L		2.2E-05	3,000	pCi/L	0.02	
Ra-226°			<1.8	pCi/L		3.2E-07	10	pCi/L		
Ra-228 ^{d,e}			<0.8	pCi/L		1.4E-07	30	pCi/L	i	
TSS			128.2	mg/L		-	- 50	-	1 l	
Gross Alpha (raw water)			<13.5	pCi/L		5.1E-07	3,000	pCi/L		
Gross Beta	1		<18.1	pCi/L	19,785	6.8E-07		A Pere	0.01	
Th-228			<0.6	pCi/L		2.4E-08	2,000	pCi/L		
Th-230			0.6	pCi/L		4.5E-08	1,000	pCi/L		
Th-232	SLDS-BK604	05/13/20 - 05/28/20	<0.6	pCi/L		2.4E-08	300	pCi/L		
Uranium (KPA)	3LD3-BK004	(Plant 6WH)	<9.8	pCi/L	19,765	3.7E-07	3,000	pCi/L		
	_		<1.9	pCi/L		7.3E-08	10	pCi/L	ł	
Ra-226 ^c Ra-228 ^{d,e}	_		<0.6	pCi/L		2.4E-08	30	pCi/L		
TSS	_		65.9			2.4E-06	30	pC/L		
			<13.7	mg/L			2.000	-		
Gross Alpha (raw water)				pCi/L		2.4E-07	3,000	pCi/L	ł	
Gross Beta			<17.6	pCi/L		3.1E-07	NA 2.000	C:/T		
Th-228			<0.6	pCi/L		1.1E-08	2,000	pCi/L		
Th-230	SLDS-BK605	06/01/20 - 06/04/20	1.3	pCi/L	0.247	4.8E-08	1,000	pCi/L	0.01	
Th-232	SLDS-BK003	(Plant 6WH)	<0.4	pCi/L	9,347	7.9E-09	300	pCi/L	0.01	
Uranium (KPA)			8.5	pCi/L		3.0E-07	3,000	pCi/L		
Ra-226 ^c			< 0.9	pCi/L		1.5E-08	10	pCi/L		
Ra-228 ^{d,e}			< 0.6	pCi/L		1.1E-08	30	pCi/L	ļ	
TSS			17.4	mg/L		-		-		
Gross Alpha (raw water)			25.9	pCi/L		1.2E-05	3,000	pCi/L	1	
Gross Beta	_		18.8	pCi/L		9.1E-06		IA	1	
Th-228	_		0.7	pCi/L		3.6E-07	2,000	pCi/L		
Th-230	_	06/01/20 - 06/30/20	2.3	pCi/L		1.1E-06	1,000	pCi/L	0.01	
Th-232	SLDS-BK606	(Guther Salt)	< 0.7	pCi/L	127,260	1.6E-07	300	pCi/L		
Uranium (KPA)	\Box	(Samer Sam)	22.8	pCi/L		1.1E-05	3,000	pCi/L		
Ra-226 ^c			<1.4	pCi/L		3.3E-07	10	pCi/L		
Ra-228 ^{d,e}			0.7	pCi/L		3.6E-07	30	pCi/L		
TSS	1		212.8	mg/L		-		-		

Total Activity	Discharged in Second	Quarter of CY 2020 (Ci)

Th-228	7.1E-07
Th-230	1.7E-06
Th-232	4.8E-07
Uranium (KPA)	5.2E-05
Ra-226	9.2E-07
Ra-228 ^d	7.1E-07

Total Volume Discharged in Second Quarter of CY 2020 (gallons)

Gallons 339,004

^a Non-detect sample results are converted to half the DL.

Notes:

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

TSS - total suspended solid(s)

Total Activity Discharged through 06/30/20 (Ci)

otal Activity Discharged till o	ugii 00/30/20 (C1)
Th-228	1.8E-06
Th-230	5.0E-06
Th-232	1.3E-06
Uranium (KPA)	1.5E-04
Ra-226	3.7E-06
Ra-228 ^d	1.8E-06

 $Total\ Volume\ Discharged\ through\ 06/30/20\ (gallons)$

Gallons 711,633

^b The weighted average was used to calculate the total activity.

^c 10 CFR 20 limit is 600 pCi/L for Ra-226.

^d Ra-228 assumed to be in equilibrium with Th-228.

e 10 CFR 20 limit is 600 pCi/L for Ra-228.

Table D-1. Self-Monitoring Report for Excavation Water Discharge at the SLDS During CY 2020 (Continued)
Third Quarter

Parameter	Batch Number	Date of Discharge	Batch Results ^a		Results ^a		Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b		ischarge mit	SOR											
Gross Alpha (raw water)			30.3	pCi/L		1.7E-05	3,000	pCi/L]													
Gross Beta			26.9	pCi/L		1.5E-05	N	ΙA														
Th-228															< 0.6	pCi/L		1.7E-07	2,000	pCi/L		
Th-230		07/01/20 - 07/30/20	1.7	pCi/L		9.3E-07	1,000	pCi/L														
Th-232	SLDS-BK607	(Gunther Salt)	< 0.5	pCi/L	146,533	1.5E-07	300	pCi/L	0.01													
Uranium (KPA)		(Guittier Sait)	29.6	pCi/L		1.6E-05	3,000	pCi/L														
Ra-226 ^c			<1.4	pCi/L		3.8E-07	10	pCi/L	1													
Ra-228 ^{d,e}			< 0.6	pCi/L		1.7E-07	30	pCi/L														
TSS			64.7	mg/L		-		-	<u> </u>													
Gross Alpha (raw water)					50.4	pCi/L		2.3E-05	3,000	pCi/L												
Gross Beta			33.0	pCi/L		1.5E-05	N	ÍΑ														
Th-228			< 0.6	pCi/L		1.4E-07	2,000	pCi/L														
Th-230		00/02/20 00/27/20	2.2	pCi/L		1.0E-06	1,000	pCi/L														
Th-232	SLDS-BK608	08/03/20 - 08/27/20 (Gunther Salt)											< 0.5	pCi/L	121,576	1.2E-07	300	pCi/L	0.02			
Uranium (KPA)													(Guillier Sait)	(Guittiei Sait)	(Guittier State)	42.1	pCi/L		1.9E-05	3,000	pCi/L	
Ra-226 ^c																	ı				1.1	pCi/L
Ra-228 ^{d,e}									< 0.6	pCi/L	7	1.4E-07	30	pCi/L								
TSS	1		195.7	mg/L		-		-	1													
Gross Alpha (raw water)			67.4	pCi/L		2.2E-06	3,000	pCi/L														
Gross Beta		20/02/20				32.0	2.0 pCi/L	1.0E-06	NA		Ī											
Th-228]		0.5	pCi/L		1.6E-08	2,000	pCi/L	1													
Th-230	1		0.8	pCi/L		2.6E-08	1,000	pCi/L	1													
Th-232	SLDS-BK609	09/02/20	< 0.4	pCi/L	8,436	6.9E-09	300	pCi/L	0.02													
Uranium (KPA)	1	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	46.9	pCi/L		1.5E-06	3,000	pCi/L	1						
Ra-226 ^c]									0.6	pCi/L		1.9E-08	10	pCi/L	1						
Ra-228 ^{d,e}										0.5	pCi/L		1.6E-08	30	pCi/L	1						
TSS			30.6	mg/L		-	-		1													

Total Activity Discharged in Third Quarter of	CY 2020 (Ci)
---	--------------

Th-228		3.3E-07	
Th-230		2.0E-06	
Th-232		2.8E-07	
Uranium (KPA))	3.7E-05	
Ra-226		9.3E-07	
Ra-228 ^d		3.3E-07	

Total Volume Discharged in Third Quarter of CY 2020 (gallons)

Gallons 276,545

Notes:

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

TSS - total suspended solid(s)

Total Activity Discharged through 09/30/20 (Ci)

ount received, and and and and	0.00
Th-228	2.1E-06
Th-230	6.9E-06
Th-232	1.6E-06
Uranium (KPA)	1.9E-04
Ra-226	4.6E-06
Ra-228 ^d	2.1E-06

Total Volume Discharged through 09/30/20 (gallons)
Gallons 988,178

 $^{^{\}rm a}$ Non-detect sample results are converted to half the DL.

^b The weighted average was used to calculate the total activity.

^c 10 CFR 20 limit is 600 pCi/L for Ra-226.

^d Ra-228 assumed to be in equilibrium with Th-228.

^e 10 CFR 20 limit is 600 pCi/L for Ra-228.

⁻ No data/No limit

Table D-1. Self-Monitoring Report for Excavation Water Discharge at the SLDS During CY 2020 (Continued)
Fourth Quarter

Parameter	Batch Number	Date of Discharge	Batch Results ^a		Results ^a		Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b		ischarge mit	SOR														
Gross Alpha (raw water)			21.1	pCi/L		6.4E-06	3,000	pCi/L																	
Gross Beta			<18.6	pCi/L		2.8E-06	N	ΙA																	
Th-228																				< 0.6	pCi/L		9.8E-08	2,000	pCi/L
Th-230		10/01/20 - 10/29/20	1.2	pCi/L		3.7E-07	1,000	pCi/L																	
Th-232	SLDS-BK610	(Gunther Salt)	< 0.4	pCi/L	80,086	6.0E-08	300	pCi/L	0.01																
Uranium (KPA)		(Guittier Sait)	19.3	pCi/L		5.8E-06	3,000	pCi/L																	
Ra-226 ^c			<1.1	pCi/L		1.6E-07	10	pCi/L																	
Ra-228 ^{d,e}			< 0.6	pCi/L		9.8E-08	30	pCi/L																	
TSS			53.0	mg/L		-		-																	
Gross Alpha (raw water)			71.6	pCi/L		1.9E-05	3,000	pCi/L																	
Gross Beta			24.8	pCi/L		6.7E-06	N	ÍΑ	<u> </u>																
Th-228			< 0.5	pCi/L		6.7E-08	2,000	pCi/L	1 1																
Th-230		11/16/20 11/25/20	1 pCi/L		2.3E-07	1,000	pCi/L																		
Th-232	SLDS-BK611	11/16/20 - 11/25/20 (Gunther Salt)													< 0.6	pCi/L	71,652	8.4E-08	300	pCi/L	0.03				
Uranium (KPA)															67.6	pCi/L		1.8E-05	3,000	pCi/L					
Ra-226 ^c																		į į				<1.1	pCi/L		1.6E-07
Ra-228 ^{d,e}											< 0.5	pCi/L	i/L	6.7E-08	30	pCi/L	Í I								
TSS			37.2	mg/L		-		-	1																
Gross Alpha (raw water)			248.3	pCi/L		8.0E-05	3,000	pCi/L																	
Gross Beta			161.6	pCi/L		5.2E-05	N	ÍΑ																	
Th-228			<1.8	pCi/L		2.9E-07	2,000	pCi/L	1																
Th-230		10/00/20 10/21/22	2.4	pCi/L		7.7E-07	1,000	pCi/L	1																
Th-232	SLDS-BK612	12/09/20 - 12/31/20	< 0.9	pCi/L	85,472	1.5E-07	300	pCi/L	0.11																
Uranium (KPA)		(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	(Gunther Salt)	305.2	pCi/L		9.9E-05	3,000	pCi/L]				
Ra-226°										3.6	pCi/L	_	1.2E-06	10	pCi/L	1									
Ra-228 ^{d,e}									<1.8	pCi/L		2.9E-07	30	pCi/L	1										
TSS			44.1	mg/L		-	-		1																

Total Activity Discharged in Fou	rth Quarter of CY 2020 (Ci)
Th-228	4.6E-07
Th-230	1.4E-06
Th-232	2.9E-07
T1 1 (TTD-1)	1.25.04

Th-250 2.9E-07
Uranium (KPA) 1.2E-04
Ra-226 1.5E-06
Ra-228^d 4.6E-07

Total Volume Discharged in Fourth Quarter of CY 2020 (gallons)
Gallons 237,210

Notes

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

 $TSS \hbox{ - total suspended } solid(s)$

 Total Activity Discharged through 12/31/20 (CI)

 Th-228
 2.6E-06

 Th-230
 8.3E-06

 Th-232
 1.9E-06

 Uranium (KPA)
 3.1E-04

 Ra-226
 6.1E-06

Ra-228d

Total Volume Discharged through 12/31/20 (gallons)
Gallons 1,225,388

 $^{^{\}rm a}$ Non-detect sample results are converted to half the DL.

^b The weighted average was used to calculate the total activity.

 $^{^{\}rm c}\,10$ CFR $\,20$ limit is 600 pCi/L for Ra-226.

^d Ra-228 assumed to be in equilibrium with Th-228.

 $^{^{\}rm e}\,10$ CFR $\,20$ limit is 600 pCi/L for Ra-228.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020
APPENDIX E
GROUNDWATER FIELD PARAMETER DATA FOR CALENDAR YEAR 2020 AND ANALYTICAL DATA RESULTS FOR CALENDAR YEAR 2020
(On the CD-ROM on the Back Cover of this Report)
REVISION 0
REVISION U

St. Louis Downtown Site Annual En	vironmental Monitoring Data and Analysis Report for	CY 2020
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THIS	S PAGE INTENTIONALLY LEFT B	LANK
THE	S PAGE INTENTIONALLY LEFT B	LANK

Table E-1. Groundwater Monitoring Field Parameters for the SLDS First Quarter 2020

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (µS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 02/06/20
B16W06D											21.22
B16W06S											23.73
B16W07D											23.70
B16W08D											23.81
B16W08S											22.24
B16W09D											19.72
B16W12S											12.90
DW14											**
DW15	02/06/20	250	1,000	6.03	0.291	79.4	9.75	11.0	186	25.39	25.39
DW16											20.85
DW17	02/06/20	300	3,600	6.08	0.233	45.2	4.40	12.6	202	22.74	22.74
DW18											25.11
DW19RD											20.90
DW19RS											16.00
DW21											8.35

Table E-1. Groundwater Monitoring Field Parameters for the SLDS (Continued)
Second Quarter 2020

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (µS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 05/27/20
B16W06D											16.16
B16W06S											19.11
B16W07D											18.69
B16W08D	05/28/20	280	2,700	6.69	0.193	168.0	1.72	166	-130	17.16	18.73
B16W08S											17.35
B16W09D											14.70
B16W12S	05/28/20	85	1,275	6.36	0.180	74.6	3.34	16.6	248	12.52	12.19
DW14											**
DW15											20.40
DW16											15.82
DW17											17.78
DW18											20.08
DW19RD	05/28/20	150	1,800	6.59	0.211	168.0	2.13	16.7	-107	14.56	15.84
DW19RS	05/28/20	50	750	6.76	0.314	207.0	1.59	16.3	-140	12.75	12.78
DW21											7.85

Table E-1. Groundwater Monitoring Field Parameters for the SLDS (Continued)
Third Quarter 2020

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (µS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 08/13/20
B16W06D											***
B16W06S											28.17*
B16W07D											30.5
B16W08D											31.06*
B16W08S											25.21*
B16W09D											26.00
B16W12S											9.88
DW14											20.28
DW15											31.75
DW16											27.40*
DW17											29.59
DW18											31.95
DW19RD	08/13/20	150	2,250	6.45	0.207	51.4	2.55	17.3	-101	18.20	18.20
DW19RS	08/13/20	50	600	6.61	0.314	198.0	2.27	18.4	-107	18.07	17.49
DW21											7.90

Table E-1. Groundwater Monitoring Field Parameters for the SLDS (Continued)
Fourth Quarter 2020

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (µS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 11/11/20
B16W06D											37.97
B16W06S	11/19/20	100	1,000	5.80	0.121	300.0	11.78	16.4	208	36.77	37.03
B16W07D											40.31
B16W08D	11/18/20	300	3,600	6.04	0.212	181.0	1.83	15.9	-55	39.98	40.53
B16W08S											34.20
B16W09D											35.98
B16W12S											17.93
DW14	11/11/20	150	1,000	6.11	0.492	130	10.23	17.3	227	32.75	32.75
DW15								-			41.68
DW16	11/16/20	300	4,500	6.27	0.163	250.0	1.40	16.3	-78	36.80	37.23
DW17											****
DW18	11/16/20	300	3,600	6.44	0.178	240.0	1.62	15.9	-159	41.16	41.77
DW19RD	11/13/20	150	1,350	6.46	0.199	32.4	2.49	16.4	-116	37.35	37.24
DW19RS	11/13/20	50	450	6.38	0.268	76.2	2.83	15.8	-119	****	25.36
DW21											11.22

^{*} BTOC date for B16W06S, B16W08D, B16W08S, and DW16 is August 12, 2020 for the third quarter of 2020.

BTOC - below top of casing

DO - dissolved oxygen

ORP - oxidation reduction potential

^{**} Measurement could not be taken at DW14 during the first quarter of 2020 and the second quarter of 2020 because well was obstructed.

^{***} Measurement could not be taken at B16W06D during the third quarter of 2020 because well was inaccessible (overgrown with poison ivy).

^{****} Measurement could not be taken at DW19RS during the fourth quarter of 2020 because water level was below top of bladder pump at time of sampling.

^{*****} Measurement could not be taken at DW17 during the fourth quarter of 2020 because water level was below top of bladder pump.

⁻⁻⁻ Monitoring well was not sampled during this event.

Table E-2. CY 2020 Groundwater Sampling Data for the SLDS

Site: SLDS											
Sample Name	Station Name	Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	vQ	Validation Reason Code	Filtered
SLD232366	B16W06S	11/19/20	SW846 6020	Arsenic	330		0.33	μg/L	=		No
SLD232366	B16W06S	11/19/20	SW846 6020	Cadmium	0.54		0.27	μg/L	J		No
SLD223820	B16W08D	05/28/20	SW846 6020	Arsenic	19		4	μg/L	=		No
SLD223820	B16W08D	05/28/20	SW846 6020	Cadmium	0.51		0.2	μg/L	=		No
SLD223820	B16W08D	05/28/20	ML-006	Ra-226	0.0911	0.27	0.699	pCi/L	UJ	T06	No
SLD223820	B16W08D	05/28/20	ML-005	Th-228	0.337	0.29	0.303	pCi/L	J	T04, T20	No
SLD223820	B16W08D	05/28/20	ML-005	Th-230	0.813	0.447	0.261	pCi/L	J	F01, T04, T20	No
SLD223820	B16W08D	05/28/20	ML-005	Th-232	0.102	0.167	0.303	pCi/L	UJ	T06	No
SLD223820	B16W08D	05/28/20	ML-015	U-234	0.104	0.2	0.432	pCi/L	UJ	T06	No
SLD223820	B16W08D	05/28/20	ML-015	U-235	-0.0215	0.175	0.445	pCi/L	UJ	T06	No
SLD223820	B16W08D	05/28/20	ML-015	U-238	0.234	0.281	0.458	pCi/L	UJ	P08, T06	No
SLD232367	B16W08D	11/18/20	ML-006	Ra-226	0.386	0.461	0.87	pCi/L	UJ	T06	No
SLD232367	B16W08D	11/18/20	ML-005	Th-228	0.63	0.442	0.416	pCi/L	J	T04, T20	No
SLD232367	B16W08D	11/18/20	ML-005	Th-230	0.80	0.51	0.534	pCi/L	J	T04, T20	No
SLD232367	B16W08D	11/18/20	ML-005	Th-232	-0.00906	0.146	0.323	pCi/L	UJ	T06	No
SLD232367	B16W08D	11/18/20	ML-015	U-234	0.336	0.311	0.307	pCi/L	J	T04, T20	No
SLD232367	B16W08D	11/18/20	ML-015	U-235	0	0.241	0.626	pCi/L	UJ	T06	No
SLD232367	B16W08D	11/18/20	ML-015	U-238	0.541	0.393	0.306	pCi/L	J	T04, T20	No
SLD223821	B16W12S	05/28/20	SW846 6020	Arsenic	4		4	μg/L	U		No
SLD223821	B16W12S	05/28/20	SW846 6020	Cadmium	0.2		0.2	μg/L	U	D10	No
SLD223821	B16W12S	05/28/20	ML-006	Ra-226	0.0883	0.306	0.8	pCi/L	UJ	T06	No
SLD223821	B16W12S	05/28/20	ML-005	Th-228	0.447	0.364	0.522	pCi/L	UJ	T04, T05	No
SLD223821	B16W12S	05/28/20	ML-005	Th-230	0.753	0.438	0.342	pCi/L	J	F01, T04, T20	No
SLD223821	B16W12S	05/28/20	ML-005	Th-232	0.104	0.17	0.308	pCi/L	UJ	T06	No
SLD223821	B16W12S	05/28/20	ML-015	U-234	3.12	0.985	0.482	pCi/L	=		No
SLD223821	B16W12S	05/28/20	ML-015	U-235	0.149	0.243	0.441	pCi/L	UJ	T06	No
SLD223821	B16W12S	05/28/20	ML-015	U-238	2.9	0.945	0.48	pCi/L	=	P08	No
SLD232368	DW14	11/11/20	SW846 6020	Arsenic	250		4	μg/L	=		No
SLD232368	DW14	11/11/20	SW846 6020	Cadmium	2.7		0.2	μg/L	=		No
SLD221570	DW15	02/06/20	SW846 6020	Arsenic	4		4	μg/L	U		No
SLD221570	DW15	02/06/20	SW846 6020	Cadmium	3.2		0.2	μg/L	=		No
SLD221570	DW15	02/06/20	ML-006	Ra-226	0.422	0.417	0.697	pCi/L	UJ	T04, T05	No
SLD221570	DW15	02/06/20	ML-005	Th-228	0.0457	0.179	0.501	pCi/L	UJ	T06	No
SLD221570	DW15	02/06/20	ML-005	Th-230	0.45	0.352	0.403	pCi/L	J	T04, T20	No
SLD221570	DW15	02/06/20	ML-005	Th-232	-0.02	0.124	0.315	pCi/L	UJ	T06	No
SLD221570	DW15	02/06/20	ML-015	U-234	0.527	0.452	0.588	pCi/L	UJ	T04, T05	No
SLD221570	DW15	02/06/20	ML-015	U-235	0.078	0.211	0.538	pCi/L	UJ	T06	No
SLD221570	DW15	02/06/20	ML-015	U-238	0.388	0.379	0.481	pCi/L	UJ	T04, T05	No

Table E-2. CY 2020 Groundwater Sampling Data for the SLDS (Continued)

Site: SLDS											
•	Station Name	Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD232369	DW16	11/16/20	SW846 6020	Arsenic	21		4	μg/L	=		No
SLD232369	DW16	11/16/20	SW846 6020	Cadmium	0.52		0.2	μg/L	=		No
SLD221571	DW17	02/06/20	SW846 6020	Arsenic	12		4	μg/L	=		No
SLD221571	DW17	02/06/20	SW846 6020	Cadmium	2.1		0.2	μg/L	=		No
SLD221571	DW17	02/06/20	ML-006	Ra-226	0.315	0.402	0.793	pCi/L	UJ	T06	No
SLD221571	DW17	02/06/20	ML-005	Th-228	0.378	0.351	0.465	pCi/L	UJ	T04, T05	No
SLD221571	DW17	02/06/20	ML-005	Th-230	0.616	0.432	0.364	pCi/L	J	T04, T20	No
SLD221571	DW17	02/06/20	ML-005	Th-232	0.132	0.2	0.313	pCi/L	UJ	T06	No
SLD221571	DW17	02/06/20	ML-015	U-234	0.88	0.545	0.361	pCi/L	J	T04, T20	No
SLD221571	DW17	02/06/20	ML-015	U-235	-0.025	0.203	0.517	pCi/L	UJ	T06	No
SLD221571	DW17	02/06/20	ML-015	U-238	0.967	0.59	0.593	pCi/L	J	T04, T20	No
SLD232370	DW18	11/16/20	SW846 6020	Arsenic	84		4	μg/L	=		No
SLD232370	DW18	11/16/20	SW846 6020	Cadmium	0.2		0.2	μg/L	U		No
SLD223822	DW19RD	05/28/20	SW846 6020	Arsenic	20		4	μg/L	=		No
SLD223822	DW19RD	05/28/20	SW846 6020	Cadmium	0.2		0.2	μg/L	U	D10	No
SLD223822	DW19RD	05/28/20	ML-006	Ra-226	0.736	0.577	0.855	pCi/L	UJ	T04, T05	No
SLD223822	DW19RD	05/28/20	ML-005	Th-228	0.442	0.35	0.425	pCi/L	J	T04, T20	No
SLD223822	DW19RD	05/28/20	ML-005	Th-230	0.648	0.411	0.35	pCi/L	J	F01, T04, T20	No
SLD223822	DW19RD	05/28/20	ML-005	Th-232	-0.00761	0.123	0.271	pCi/L	UJ	T06	No
SLD223822	DW19RD	05/28/20	ML-015	U-234	52.5	6.5	0.535	pCi/L	=		No
SLD223822	DW19RD	05/28/20	ML-015	U-235	3.91	1.26	0.595	pCi/L	=		No
SLD223822	DW19RD	05/28/20	ML-015	U-238	57.8	7.03	0.324	pCi/L	=	P08	No
SLD228901	DW19RD	08/13/20	SW846 6020	Arsenic	19		4	μg/L	=		No
SLD228901-1	DW19RD	08/13/20	SW846 6020	Arsenic	20		4	μg/L	=		No
SLD228901	DW19RD	08/13/20	SW846 6020	Cadmium	0.2		0.2	μg/L	U		No
SLD228901-1	DW19RD	08/13/20	SW846 6020	Cadmium	0.38		0.2	μg/L	J	E01	No
SLD228901	DW19RD	08/13/20	ML-006	Ra-226	0.631	0.449	0.474	pCi/L	J	T04, T20	No
SLD228901-1	DW19RD	08/13/20	ML-006	Ra-226	0.393	0.409	0.718	pCi/L	UJ	T06	No
SLD228901-2	DW19RD	08/13/20	SW846 9315 MODL	Ra-226	0.446	0.12	0.0763	pCi/L	=		No
SLD228901-2	DW19RD	08/13/20	SW846 9320 MODL	Ra-228	0.908	0.478	0.696	pCi/L	J	T04, T20	No
SLD228901	DW19RD	08/13/20	ML-005	Th-228	0.132	0.239	0.522	pCi/L	UJ	T06	No
SLD228901-1	DW19RD	08/13/20	ML-005	Th-228	0.207	0.276	0.538	pCi/L	UJ	T06	No
SLD228901-2	DW19RD	08/13/20	EML A-01-R MOD	Th-228	-0.00469	0.119	0.221	pCi/L	UJ	T06	No
SLD228901	DW19RD	08/13/20	ML-005	Th-230	0.446	0.355	0.351	pCi/L	J	F01, T04, T20	No
SLD228901-1	DW19RD	08/13/20	ML-005	Th-230	0.786	0.454	0.428	pCi/L	J	F01, T04, T20	No
SLD228901-2	DW19RD	08/13/20	EML A-01-R MOD	Th-230	0.184	0.188	0.226	pCi/L	UJ	T06	No
SLD228901	DW19RD	08/13/20	ML-005	Th-232	0.132	0.229	0.486	pCi/L	UJ	T06	No
SLD228901-1	DW19RD	08/13/20	ML-005	Th-232	0.0148	0.129	0.427	pCi/L	UJ	T06	No

Table E-2. CY 2020 Groundwater Sampling Data for the SLDS (Continued)

Site: SLDS											
Sample Name	Station Name	Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD228901-2	DW19RD	08/13/20	EML A-01-R MOD	Th-232	0.0447	0.0612	0.0819	pCi/L	UJ	T06	No
SLD228901	DW19RD	08/13/20	ML-015	U-234	57.6	7.4	0.367	pCi/L	=		No
SLD228901-1	DW19RD	08/13/20	ML-015	U-234	49.6	6.42	0.408	pCi/L	=		No
SLD228901-2	DW19RD	08/13/20	EML A-01-R MOD	U-234	54.5	5.34	0.26	pCi/L	=		No
SLD228901	DW19RD	08/13/20	ML-015	U-235	2.94	1.14	0.453	pCi/L	=		No
SLD228901-1	DW19RD	08/13/20	ML-015	U-235	2.53	1.04	0.715	pCi/L	=		No
SLD228901-2	DW19RD	08/13/20	EML A-01-R MOD	U-235	3.05	0.776	0.306	pCi/L	=		No
SLD228901	DW19RD	08/13/20	ML-015	U-238	56.8	7.3	0.605	pCi/L	=		No
SLD228901-1	DW19RD	08/13/20	ML-015	U-238	47.4	6.18	0.45	pCi/L	=		No
SLD228901-2	DW19RD	08/13/20	EML A-01-R MOD	U-238	54.2	5.31	0.283	pCi/L	=		No
SLD232364	DW19RD	11/13/20	SW846 6020	Arsenic	20		4	μg/L	=		No
SLD232364	DW19RD	11/13/20	SW846 6020	Cadmium	0.88		0.2	μg/L	=		No
SLD232364	DW19RD	11/13/20	ML-006	Ra-226	0.597	0.501	0.809	pCi/L	UJ	T04, T05	No
SLD232364	DW19RD	11/13/20	ML-005	Th-228	0.371	0.312	0.281	pCi/L	J	T04, T20	No
SLD232364	DW19RD	11/13/20	ML-005	Th-230	0.553	0.384	0.327	pCi/L	J	T04, T20	No
SLD232364	DW19RD	11/13/20	ML-005	Th-232	-0.0158	0.128	0.327	pCi/L	UJ	T06	No
SLD232364	DW19RD	11/13/20	ML-015	U-234	36.4	4.91	0.317	pCi/L	=		No
SLD232364	DW19RD	11/13/20	ML-015	U-235	2.19	0.907	0.392	pCi/L	=		No
SLD232364	DW19RD	11/13/20	ML-015	U-238	37.7	5.03	0.316	pCi/L	=		No
SLD223823	DW19RS	05/28/20	SW846 6020	Arsenic	7.8		4	μg/L	=		No
SLD223823	DW19RS	05/28/20	SW846 6020	Cadmium	0.39		0.2	μg/L	J	D10	No
SLD223823	DW19RS	05/28/20	ML-006	Ra-226	0.22	0.467	1.11	pCi/L	UJ	T06	No
SLD223823	DW19RS	05/28/20	ML-005	Th-228	0.281	0.274	0.348	pCi/L	UJ	T04, T05	No
SLD223823	DW19RS	05/28/20	ML-005	Th-230	0.235	0.245	0.271	pCi/L	UJ	T06	No
SLD223823	DW19RS	05/28/20	ML-005	Th-232	-0.0152	0.123	0.314	pCi/L	UJ	T06	No
SLD223823	DW19RS	05/28/20	ML-015	U-234	3.12	1.01	0.504	pCi/L	=		No
SLD223823	DW19RS	05/28/20	ML-015	U-235	-0.0222	0.181	0.461	pCi/L	UJ	T06	No
SLD223823	DW19RS	05/28/20	ML-015	U-238	2.9	0.964	0.475	pCi/L	=	P08	No
SLD228902	DW19RS	08/13/20	SW846 6020	Arsenic	4.6		4	μg/L	=		No
SLD228902	DW19RS	08/13/20	SW846 6020	Cadmium	0.96		0.2	μg/L	J	E01	No
SLD228902	DW19RS	08/13/20	ML-006	Ra-226	0.19	0.36	0.83	pCi/L	UJ	T06	No
SLD228902	DW19RS	08/13/20	ML-005	Th-228	0.589	0.411	0.459	pCi/L	J	T04, T20	No
SLD228902	DW19RS	08/13/20	ML-005	Th-230	0.366	0.316	0.338	pCi/L	J	F01, T04, T20	No
SLD228902	DW19RS	08/13/20	ML-005	Th-232	0.0954	0.186	0.406	pCi/L	UJ	T06	No
SLD228902	DW19RS	08/13/20	ML-015	U-234	1.28	0.682	0.384	pCi/L	J	T04, T20	No
SLD228902	DW19RS	08/13/20	ML-015	U-235	0	0.301	0.783	pCi/L	UJ	T06	No
SLD228902	DW19RS	08/13/20	ML-015	U-238	2.05	0.869	0.383	pCi/L	=		No

Table E-2. CY 2020 Groundwater Sampling Data for the SLDS (Continued)

C:40. CI DC											
Site: SLDS Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD232365	DW19RS	11/13/20	SW846 6020	Arsenic	8.6		4	μg/L	=		No
SLD232365	DW19RS	11/13/20	SW846 6020	Cadmium	0.2		0.2	μg/L	U		No
SLD232365	DW19RS	11/13/20	ML-006	Ra-226	0.204	0.499	1.23	pCi/L	UJ	T06	No
SLD232365	DW19RS	11/13/20	ML-005	Th-228	0.493	0.402	0.518	pCi/L	UJ	T04, T05	No
SLD232365	DW19RS	11/13/20	ML-005	Th-230	0.547	0.404	0.365	pCi/L	J	T04, T20	No
SLD232365	DW19RS	11/13/20	ML-005	Th-232	0.132	0.2	0.314	pCi/L	UJ	T06	No
SLD232365	DW19RS	11/13/20	ML-015	U-234	14.1	2.76	0.474	pCi/L	=		No
SLD232365	DW19RS	11/13/20	ML-015	U-235	0.875	0.648	0.585	pCi/L	J	T04, T20	No
SLD232365	DW19RS	11/13/20	ML-015	U-238	15.7	2.97	0.522	pCi/L	=		No

VOs:

- = Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.
- J Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.
- U Indicates that the data met all QA/QC requirements, and that the parameter was analyzed for but was not detected above the reported sample quantitation limit.
- UJ Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate.

Validation Reason Codes:

- D10 Initial/Continuing Calibration Inorganics: Professional judgment was used to qualify the data.
- E01 ICP and Furnace Requirements: Interference check sample recovery was outside the control limit.
- F01 Blanks: Sample data were qualified as a result of the method blank.
- P08 Laboratory Control Samples (LCSs): Professional judgment was used to qualify the data.
- T04 Radionuclide Quantitation: Professional judgment was used to qualify the data.
- T05 Radionuclide Quantitation: Analytical result is less than the associated MDA, but greater than the counting uncertainty.
- T06 Radionuclide Quantitation: Analytical result is less than both the associated counting uncertainty and MDA.
- T20 Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainly 50 to 100 percent of the result.

C	t T	Onic	Down	town Site	Δnniial	Environ	mental N	Aonitorin	o Data a	and Ana	lycic l	Report	for	Γ V	2020
o	l. I	JOUIS	HOOWII	wii oii	z Ammuai	ЕПУПОП	memai n	лониони	וצו ואומו פו	ши жна	IVSIS I	Neboli.	TOI '	LΙ	20120

APPENDIX F

WELL MAINTENANCE CHECKLISTS FOR THE ANNUAL GROUNDWATER MONITORING WELL INSPECTIONS CONDUCTED AT THE ST. LOUIS DOWNTOWN SITE IN CALENDAR YEAR 2020

(On the CD-ROM on the Back Cover of this Report)

St. Louis Downtown Site Annual Env	vironmental Monitoring Data and Analysis Report for	CY 2020
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK
THIS	S PAGE INTENTIONALLY LEFT BI	LANK

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020
CALENDAD VEAD 2020 WELL MAINTENANCE CHECKLISTS
CALENDAR YEAR 2020 WELL MAINTENANCE CHECKLISTS
CALENDAR YEAR 2020 WELL MAINTENANCE CHECKLISTS FOR THE ST LOUIS DOWNTOWN SITE

APPENDIX F REVISION 0

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX F REVISION 0

Nam	Name of Observer(s): L. Hoover, N. Gross			Date:	03/12/2020	Time: 10	025	
Mon	itoring Well Statio	n Identification:	B16W06D		SLA	APS* ⊠S	LDS [HISS
	Is well accessible Is well accessible Is well covered/su Is there standing a Is the weep hole of Is the protective of (i.e., bird dropping Is the riser casing Is the concrete part Does the pad move Are there gaps between Are there signs of Is riser cap present Do the wells in the properly working Do the flush moun floodplain have a Is the well secure Do the locks work Are the locks rust Does surface water Is TOC elevation.	ion visible on top? arrounded by veget vater or debris instepen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we reosion around that? The Mississippi River pressure cap? In the Misproperly working (shut properly working (shut properly or a properly? The flow away from mark clearly visible change in land used any type of attertions regarding this	side well casing? If r blockage. naged, rusted, or co ed? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater C ssissippi River and g pressure cap? locked, if applicable h well casing (i.e., noble? e that impacts the wention before the next performance of the comment section.	reek floo Coldwate e)?	ont well? we water. other matter dplain have a er Creek g)? s, describe in	Yes	\mathbf{N}_{0}	N/A

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	_ Date:	03/12/2020	Time: <u>1</u>	025	
Mon	Monitoring Well Station Identification: B16W06S						LDS [HISS
	Is well identificated Is well accessible Is well covered/sure Is there standing was the weep hole of Is the protective of (i.e., bird dropping Is the riser casing Is the concrete pare Does the pad move Are there gaps beto Are there gaps beto Are there signs of Is riser cap present Do the wells in the properly working Do the flush moun floodplain have a Is the well secure Do the locks work Are the locks rusted Is TOC elevation Has there been a comment section.	ion visible on top? arrounded by veget water or debris insopen? If not, clear asing dented, damags)? dented or damaged intact (free of cree or is it unstable tween pad and we reosion around that? e Mississippi River pressure cap? In twells in the Misproperly working (shut properly or a properly? et flow away from mark clearly visible change in land used any type of attentives, describe in coors regarding this	side well casing? If blockage. haged, rusted, or coed? cacks, chips, etc.)? ll casing? he well or pad? er and Coldwater Cossissippi River and pressure cap? locked, if applicable well casing (i.e., note? e that impacts the well on before the next omment section.	So, removered in of the coldward for ponding rell? If ye	ont well? ve water. other matter dplain have a er Creek g)? s, describe in	Yes		N/A

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	Name of Observer(s): L. Hoover, N. Gross			Date:	03/12/2020	Time:	0925	
Mon	itoring Well Station	n Identification:	B16W07D			APS* ⊠	SLDS [HISS
	Is well identification Is well accessible in the standing with Is there standing with Is the weep hole of the protective	on visible on top? rrounded by veget vater or debris instead pen? If not, clear asing dented, dant gs)? dented or damaged intact (free of cree or is it unstable tween pad and we erosion around that? e Mississippi Riv pressure cap? It wells in the Mit properly working (shut properly or a properly? ed? er flow away from mark clearly visible change in land used any type of atterves, describe in comes regarding this	side well casing? If r blockage. haged, rusted, or cored? racks, chips, etc.)? ? ell casing? he well or pad? er and Coldwater Cossissippi River and pressure cap? locked, if applicable a well casing (i.e., note? e that impacts the wention before the next part of the comment section. well.	reek floo Coldwate e)? o ponding	ont well? we water. other matter dplain have a er Creek g)? s, describe in	Ye S S S S S S S S S S S S S S S S S S S		N/A
_								

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	Name of Observer(s): L. Hoover, N. Gross			Date:	03/12/2020	Time: 1	.020	
Mon	itoring Well Station	n Identification:	B16W08D			APS* ⊠S	LDS [HISS
	Is well identification Is well accessible in the standing with Is there standing with Is the weep hole of the protective	on visible on top? rrounded by veget vater or debris instead pen? If not, clear asing dented, dant gs)? dented or damaged intact (free of cree or is it unstable tween pad and we erosion around that? e Mississippi Riv pressure cap? It wells in the Mit properly working (shut properly or a properly? ed? er flow away from mark clearly visible change in land used any type of atterves, describe in comes regarding this	side well casing? If r blockage. haged, rusted, or conted? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater Content of the casing? locked, if applicable applicable well casing (i.e., note? ethat impacts the wention before the next omment section. well.	reek floo Coldwate e)? o ponding	nt well? ve water. other matter dplain have a er Creek g)? s, describe in	Yes		N/A

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	Name of Observer(s): L. Hoover, N. Gross			Date:	03/12/2020	Time:	1020	
Mon	itoring Well Station	n Identification:	B16W08S			APS* ∑	SLDS	HISS
	Is well identification Is well accessible as well covered/sure Is there standing was Is there standing was Is the protective of the protec	on visible on top? rrounded by veget vater or debris instead pen? If not, clear asing dented, dant gs)? dented or damaged intact (free of cree or is it unstable tween pad and we erosion around that? e Mississippi Riv pressure cap? It wells in the Mit properly working (shut properly or a properly? ed? er flow away from mark clearly visible change in land used any type of atterves, describe in comes regarding this	side well casing? If r blockage. haged, rusted, or cored? racks, chips, etc.)? ? ell casing? he well or pad? er and Coldwater Cossissippi River and pressure cap? locked, if applicable a well casing (i.e., note? e that impacts the well on before the next omment section.	reek floo Coldwate e)? o ponding	nt well? ve water. other matter dplain have a er Creek g)? s, describe in			N/A

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	Name of Observer(s): L. Hoover, N. Gross			Date:	03/12/2020	Time	: 09	920	
Mon	itoring Well Station	n Identification:	B16W09D			APS*	⊠SI	LDS [HISS
	Is well identification Is well accessible as well covered/sure Is there standing was Is there standing was Is the protective of the protec	on visible on top? rrounded by veget vater or debris instead pen? If not, clear asing dented, dant gs)? dented or damaged intact (free of cree or is it unstable tween pad and we erosion around that? e Mississippi Riv pressure cap? It wells in the Mit properly working (shut properly or a properly? ed? er flow away from mark clearly visible change in land used any type of atterves, describe in comes regarding this	side well casing? If r blockage. haged, rusted, or coved? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater C ssissippi River and g pressure cap? locked, if applicable h well casing (i.e., note? e that impacts the wention before the next omment section.	reek floo Coldwate e)? o ponding	ont well? we water. other matter dplain have a er Creek g)? s, describe in		Yes		N/A

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	Name of Observer(s): L. Hoover, N. Gross			Date:	03/12/2020	Time: <u>0</u>	910	
Mon	itoring Well Station	n Identification:	B16W12S		SLA	APS* ⊠S	LDS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Com Not	Is well identification Is well accessible is well covered/sure Is there standing was the weep hole of the interest of the protective of th	ion visible on top? arrounded by veget vater or debris instepen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we reosion around that? Me Mississippi Riv pressure cap? In wells in the Mit properly working (shut properly or a properly? Met flow away from mark clearly visible thange in land used any type of attertives, describe in contents.	side well casing? If r blockage. haged, rusted, or compared? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater Compared and Coldwater Compared and casing? he well casing (i.e., note) he well casing (i.e., note) he that impacts the well compared the next comment section.	reek floo Coldwate e)? o ponding	nt well? ve water. other matter dplain have a er Creek g)? s, describe in	Yes		N/A

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	Name of Observer(s): L. Hoover, N. Gross				03/12/2020	Time:	0935	
Mon	itoring Well Station	n Identification:	DW14			APS* ⊠	SLDS	HISS
	Is well identification Is well accessible? Is well covered/sure Is there standing with Is the weep hole of Is the protective of (i.e., bird dropping Is the riser casing Is the concrete part Is the concrete part Is the part Is the part Is there is gaps bet Is a concrete part Is the wells in the properly working Is the wells in the properly working Is the well secure Is the well secure Is the well secure Is the locks rusted Is TOC elevation in Has there been a comment section.	on visible on top? rrounded by veget vater or debris instead pen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we erosion around that? e Mississippi River pressure cap? It wells in the Misproperly working (shut properly or a properly? ed? er flow away from mark clearly visible change in land used any type of attentives, describe in comes regarding this	side well casing? If a blockage. haged, rusted, or conted? cacks, chips, etc.)? cacks, chips,	reek floo Coldwate e)? o ponding	ont well? ve water. other matter dplain have a er Creek g)? s, describe in	Ye		N/A

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	Name of Observer(s): L. Hoover, N. Gross			Date:	03/12/2020	Time: <u>0</u>	910	
Mon	itoring Well Station	n Identification:	DW15		SLA	APS* ⊠S	LDS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Com Nor	Is well identificating well accessible? Is well covered/sure Is there standing with the standing with the weep hole of the protective of t	on visible on top? carrounded by veget vater or debris instepen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we erosion around that? The Mississippi River pressure cap? In wells in the Misproperly working (shut properly or a properly? The flow away from mark clearly visible thange in land used any type of attertives, describe in converse.	side well casing? If r blockage. haged, rusted, or co ed? cacks, chips, etc.)? ell casing? he well or pad? er and Coldwater Cossissippi River and pressure cap? locked, if applicable a well casing (i.e., note? e that impacts the wention before the next part of the comment section.	Tush mounts so, removered in of the coldward so ponding the coldward sell? If ye	ont well? we water. other matter dplain have a er Creek g)? s, describe in	Yes		N/A

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	Name of Observer(s): L. Hoover, N. Gross				03/12/2020	Time:	093	30	
Mon	itoring Well Station	n Identification:	DW16			APS* ∑	∑ SL	DS [HISS
	Is well identification Is well accessible in the weep hole of the protective of the	on visible on top? rrounded by veget vater or debris instead pen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we erosion around that? e Mississippi River pressure cap? It wells in the Misproperly working (shut properly or a properly? et all any type of attentives, describe in comes regarding this	side well casing? If blockage. haged, rusted, or cored? cacks, chips, etc.)? ll casing? he well or pad? er and Coldwater Cassissippi River and pressure cap? locked, if applicable well casing (i.e., note? e that impacts the well on before the next omment section.	reek floo Coldwate e)? o ponding ell? If ye t groundy	ont well? we water. other matter dplain have a er Creek g)? s, describe in				
1101		nerete pud repidet		y cars.					

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	Name of Observer(s): L. Hoover, N. Gross			Date:	03/12/2020	Time:	09	25	
Mon	itoring Well Station	n Identification:	DW17			APS* [⊠SL	DS [HISS
	Is well identification Is well accessible? Is well covered/sure Is there standing was the weep hole of Is the protective of (i.e., bird dropping Is the riser casing Is the concrete pact Does the pad move Are there gaps bet Are there gaps bet Are there signs of Is riser cap present Does the wells in the properly working Does the flush mour floodplain have a Is the well secure Does surface water Is TOC elevation is Has there been a comment section. Will the well need measurement? If you ments / Observation	on visible on top? rrounded by vege vater or debris inspen? If not, clear asing dented, dames? dented or damaged intact (free of cree or is it unstable tween pad and we erosion around that? Mississippi River pressure cap? It wells in the Misproperly working (shut properly or a properly? The flow away from mark clearly visible change in land used any type of attentives, describe in comes regarding this	side well casing? If blockage. haged, rusted, or cored? cacks, chips, etc.)? ll casing? he well or pad? er and Coldwater Cossissippi River and pressure cap? locked, if applicable well casing (i.e., note? e that impacts the well on before the next omment section.	reek floo Coldwate e)?	ont well? ve water. other matter dplain have a er Creek g)? s, describe in water surface				
- KCt	Torr to a stick up si	yie wen complete	c. Remark protectiv	c casing	with well ib.				
-									

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	Name of Observer(s): L. Hoover, N. Gross			_ Date:	03/12/2020	Time: _	0905	
Mon	itoring Well Station	n Identification:	DW18			APS* ⊠	SLDS [HISS
	Is well identification Is well accessible in the standing with Is there standing with Is the weep hole of the protective	on visible on top? carrounded by veget vater or debris instepen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we erosion around that? The Mississippi River pressure cap? In the Misproperly working (shut properly working (shut properly or a properly? The flow away from mark clearly visible change in land used any type of attentions regarding this	side well casing? If a blockage. haged, rusted, or compared? cacks, chips, etc.)? cacks, chips, etc.)? ell casing? he well or pad? er and Coldwater Cassissippi River and pressure cap? locked, if applicable a well casing (i.e., respectively). The that impacts the well casing the well casing well.	Tush mounts, removered in of the coldwater of the coldwat	nt well? ve water. other matter dplain have a er Creek g)? s, describe in	Yes		N/A
	1	<u> </u>						

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	_ Date:	03/12/2020	Time: 0	915	
Mon	itoring Well Station	n Identification:	DW19RD		SLA	APS* ⊠S	LDS [HISS
	Is well identificated Is well accessible Is well covered/sure Is there standing was Is the weep hole of Is the protective of (i.e., bird dropping Is the riser casing Is the concrete pare Does the pad move Are there gaps beto Are there signs of Is riser cap present Do the wells in the properly working Do the flush moun floodplain have a Is the well secure Do the locks work Are the locks rusted Is TOC elevation. Has there been a comment section.	ion visible on top? arrounded by veget vater or debris instepen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we reosion around that? The Mississippi Riv pressure cap? In wells in the Mi properly working (shut properly or a properly? The flow away from mark clearly visible change in land used any type of attertives, describe in coors regarding this	side well casing? If r blockage. haged, rusted, or co ed? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater C ssissippi River and g pressure cap? locked, if applicable h well casing (i.e., note? e that impacts the wention before the next part of the comment section.	Tush mounts, removered in of the coldward freelr?	ont well? we water. other matter dplain have a er Creek g)? s, describe in	Yes		N/A

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/12/2020	Time: <u>0</u>	915	
Mon	itoring Well Station	n Identification:	DW19RS		SLA	APS* ⊠S	LDS [HISS
	Is well identificated Is well accessible Is well covered/sure Is there standing was Is the weep hole of Is the protective of (i.e., bird dropping Is the riser casing Is the concrete pare Does the pad move Are there gaps beto Are there signs of Is riser cap present Do the wells in the properly working Do the flush moun floodplain have a Is the well secure Do the locks work Are the locks rusted Is TOC elevation. Has there been a comment section.	ion visible on top? arrounded by veget water or debris instepen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we rerosion around that? The Mississippi Riv pressure cap? In the Mi properly working (shut properly working (shut properly or a properly? The flow away from mark clearly visible change in land used any type of attertions regarding this	side well casing? If r blockage. naged, rusted, or co ed? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater C ssissippi River and g pressure cap? locked, if applicable h well casing (i.e., note? e that impacts the wention before the next part of the comment section.	Tush mounts, removered in of the coldward freelr?	ont well? we water. other matter dplain have a er Creek g)? s, describe in	Yes		

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/12/2020	Time: 0	930	
Mon	itoring Well Station	n Identification:	DW21		SLA	APS* ⊠S	LDS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Com Not	Is well identification Is well accessible is well covered/sure Is there standing was the weep hole of the interest of the protective of th	ion visible on top? arrounded by veget vater or debris instepen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we reosion around that? The Mississippi River pressure cap? In the Misproperly working (shut properly working (shut properly or a properly? The flow away from mark clearly visible change in land used any type of attertives, describe in contract of the cont	side well casing? If r blockage. haged, rusted, or conted? cacks, chips, etc.)? ell casing? he well or pad? er and Coldwater Consissispi River and pressure cap? locked, if applicable a well casing (i.e., role? e that impacts the wention before the next part of the comment section.	Tso, removered in of Coldwate le)?	ont well? ve water. other matter dplain have a er Creek g)? s, describe in	Yes		N/A

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020	
THIS PAGE INTENTIONALLY LEFT BLANK	

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020
APPENDIX G
DOSE ASSESSMENT ASSUMPTIONS

St. Louis Downtown Site Annual Env	vironmental Monitoring Data and Analysis Report for CY 2	020
		T T 7
THIS	S PAGE INTENTIONALLY LEFT BLAN	ΙK
THIS	S PAGE INTENTIONALLY LEFT BLAN	ΙΚ
THIS	S PAGE INTENTIONALLY LEFT BLAN	JK
THIS	S PAGE INTENTIONALLY LEFT BLAN	IK
THIS	S PAGE INTENTIONALLY LEFT BLAN	IK
THIS	S PAGE INTENTIONALLY LEFT BLAN	I K
THIS	S PAGE INTENTIONALLY LEFT BLAN	IK
THIS	S PAGE INTENTIONALLY LEFT BLAN	JK
THIS	S PAGE INTENTIONALLY LEFT BLAN	JK
THIS	S PAGE INTENTIONALLY LEFT BLAN	JK
THIS	S PAGE INTENTIONALLY LEFT BLAN	iK
THIS	S PAGE INTENTIONALLY LEFT BLAN	i K
THIS	S PAGE INTENTIONALLY LEFT BLAN	JK
THIS	S PAGE INTENTIONALLY LEFT BLAN	i K
THIS	S PAGE INTENTIONALLY LEFT BLAN	i K
THIS	S PAGE INTENTIONALLY LEFT BLAN	JK
THIS	S PAGE INTENTIONALLY LEFT BLAN	iK

DOSE ASSESSMENT ASSUMPTIONS

DOSE FROM THE ST. LOUIS DOWNTOWN SITE TO A MAXIMALLY EXPOSED INDIVIDUAL

An off-site, worker-based receptor is the most realistic choice to represent the hypothetical maximally exposed individual, because of the proximity of the receptor, approximately 50 m southeast of the Mallinckrodt fenceline (DT-10), 83 m south-southeast of Plant 7W and 302 m northeast of Gunther Salt (DT-4), and because of the time the individual will spend at this location. Thus, a realistic assessment of dose can be performed using conservative assumptions of occupancy rate and distance from the source.

The following dose assessment is for a maximally exposed individual who works full-time (2,000 hours per year) at a location approximately 50 m southeast of the Mallinckrodt fenceline (DT-10) and between 83 to 302 m from the SLDS loadout area and Plant 7W/DT-4 excavation areas.

Airborne Radioactive Particulates

An EDE of less than 0.1 mrem per year to the receptor was calculated by using activity fractions to determine a source term, and then combining the dose results for Plant 7W, Gunther Salt (DT-4), and the Plant 6WH Loadout Area. The USEPA CAP88-PC modeling code was used to calculate dose to the receptor from the SLDS excavation areas and loadout area (Leidos 2021b). The distances and directions of the maximally exposed receptor from the excavated areas are presented on Figure B-1 of Appendix B. Details related to calculation of EDE for the maximally exposed receptor are contained in Appendix B.

External Gamma Pathway

Because the station DA-8 TLD was very close to the receptor, the TLD results from this location were used for the dose calculations. The station DA-8 TLD measured an annual exposure, above background, of 4.4 mrem per year, based on 8,760 hours of continuous detector exposure. The EDE due to gamma exposure for the maximally exposed individual is estimated by assuming that the site approximates a line source with a source strength (H₁) that is the average of the TLD measurements between the source and the receptor (Cember 1996).

$$H_1 = 4.4 \text{ mrem/year}$$

Based on 100 percent occupancy rate, the exposure rate (H₂) to the receptor was calculated as follows:

$$H_2 = H_1 \times \frac{h_1}{h_2} \times \frac{\tan^{-1}(L/h_2)}{\tan^{-1}(L/h_1)}$$

$$H_2 = 2.4 \text{ mrem/year}$$

where:

 H_2 = exposure rate to the receptor

 H_1 = exposure rate to the TLDs

 h_2 = distance from the source to the receptor = 193 m

 h_1 = distance from the source to the TLDs = 143 m

L = average distance from centerline of the line source (H_1) to the end of the line source = 47 m

APPENDIX G G-1 REVISION 0

The actual dose to the maximally exposed individual, who is only present during a normal work year, is calculated as follows:

$$H_{\text{MEI}} = H_2 \times \frac{2,000 \text{ hours/work year}}{8,760 \text{ hours/total year}}$$

$$H_{MEI} = 0.56 \text{ mrem/year}$$

Airborne Radon Pathway

The radon data from Station DA-12 was used to determine dose due to radon and decay chain isotopes since this was the only measurement detected above background. Appendix C presents the radon results at all stations. Station DA-12 ATDs measured annual exposures above background of 0.03 pCi/L based on 8,760 hours of continuous exposure.

$$S_1 = \left[\frac{(0.03) pCi/L}{1}\right] = 0.03 pCi/L$$

The actual radon exposure dose to the hypothetical maximally exposed individual was calculated as follows:

$$S_{MEI} = S_1 \times F \times DCF \times T \times C_1 \times C_2$$

$$S_{MEI} = 9.3E-02 \text{ mrem/year}$$

where:

S₁ = fenceline average of ATD measurements between source and receptor

 S_{MEI} = radon exposure to the hypothetical maximally exposed individual

F = Equilibrium fraction based on NCRP 97, Section 4, one (1) WL = 100 pCi/L and 0.7 outdoor equilibrium factor

DCF = dose conversion factor (USEPA 1989) = 1,250 mrem per WLM

T = exposure time for the hypothetical maximally exposed receptor = 2,000 hours per year

 C_1 = occupancy factor constant = 1 month per 170 hours

C₂ = dispersion factor = 0.03 (diffusion from source at Loadout Area to receptor distance of 130 m)

WL = working level (concentration unit)

WLM = working level month (exposure unit)

Total Effective Dose Equivalent

TEDE = CEDE (airborne particulates) + H_{MEI} (external gamma) + S_{MEI} (airborne radon) TEDE = <0.1 mrem/year + 0.6 mrem/year + < 0.1 mrem/year = 0.6 mrem/year

where:

CEDE = committed effective dose equivalent